加载中...
100-相同的树(Same Tree)
发表于:2021-12-03 | 分类: 简单
字数统计: 1.6k | 阅读时长: 7分钟 | 阅读量:

原文链接: https://leetcode-cn.com/problems/same-tree

英文原文

Given the roots of two binary trees p and q, write a function to check if they are the same or not.

Two binary trees are considered the same if they are structurally identical, and the nodes have the same value.

 

Example 1:

Input: p = [1,2,3], q = [1,2,3]
Output: true

Example 2:

Input: p = [1,2], q = [1,null,2]
Output: false

Example 3:

Input: p = [1,2,1], q = [1,1,2]
Output: false

 

Constraints:

  • The number of nodes in both trees is in the range [0, 100].
  • -104 <= Node.val <= 104

中文题目

给你两棵二叉树的根节点 pq ,编写一个函数来检验这两棵树是否相同。

如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。

 

示例 1:

输入:p = [1,2,3], q = [1,2,3]
输出:true

示例 2:

输入:p = [1,2], q = [1,null,2]
输出:false

示例 3:

输入:p = [1,2,1], q = [1,1,2]
输出:false

 

提示:

  • 两棵树上的节点数目都在范围 [0, 100]
  • -104 <= Node.val <= 104

通过代码

高赞题解

读完本文,你可以去力扣拿下如下题目:

100.相同的树

450.删除二叉搜索树中的节点

701.二叉搜索树中的插入操作

700.二叉搜索树中的搜索

98.验证二叉搜索树

———–

通过之前的文章框架思维,二叉树的遍历框架应该已经印到你的脑子里了,这篇文章就来实操一下,看看框架思维是怎么灵活运用,秒杀一切二叉树问题的。

二叉树算法的设计的总路线:明确一个节点要做的事情,然后剩下的事抛给框架。

void traverse(TreeNode root) {
    // root 需要做什么?在这做。
    // 其他的不用 root 操心,抛给框架
    traverse(root.left);
    traverse(root.right);
}

举两个简单的例子体会一下这个思路,热热身。

1. 如何把二叉树所有的节点中的值加一?

void plusOne(TreeNode root) {
    if (root == null) return;
    root.val += 1;

    plusOne(root.left);
    plusOne(root.right);
}

2. 如何判断两棵二叉树是否完全相同?

boolean isSameTree(TreeNode root1, TreeNode root2) {
    // 都为空的话,显然相同
    if (root1 == null && root2 == null) return true;
    // 一个为空,一个非空,显然不同
    if (root1 == null || root2 == null) return false;
    // 两个都非空,但 val 不一样也不行
    if (root1.val != root2.val) return false;

    // root1 和 root2 该比的都比完了
    return isSameTree(root1.left, root2.left)
        && isSameTree(root1.right, root2.right);
}

借助框架,上面这两个例子不难理解吧?如果可以理解,那么所有二叉树算法你都能解决。

二叉搜索树(Binary Search Tree,简称 BST)是一种很常用的的二叉树。它的定义是:一个二叉树中,任意节点的值要大于等于左子树所有节点的值,且要小于等于右边子树的所有节点的值。

如下就是一个符合定义的 BST:

BST{:width=450}{:align=center}

下面实现 BST 的基础操作:判断 BST 的合法性、增、删、查。其中“删”和“判断合法性”略微复杂。

零、判断 BST 的合法性

这里是有坑的哦,我们按照刚才的思路,每个节点自己要做的事不就是比较自己和左右孩子吗?看起来应该这样写代码:

boolean isValidBST(TreeNode root) {
    if (root == null) return true;
    if (root.left != null && root.val <= root.left.val) return false;
    if (root.right != null && root.val >= root.right.val) return false;

    return isValidBST(root.left)
        && isValidBST(root.right);
}

但是这个算法出现了错误,BST 的每个节点应该要小于右边子树的所有节点,下面这个二叉树显然不是 BST,但是我们的算法会把它判定为 BST。

notBST{:width=450}{:align=center}

出现错误,不要慌张,框架没有错,一定是某个细节问题没注意到。我们重新看一下 BST 的定义,root 需要做的不只是和左右子节点比较,而是要整个左子树和右子树所有节点比较。怎么办,鞭长莫及啊!

这种情况,我们可以使用辅助函数,增加函数参数列表,在参数中携带额外信息,请看正确的代码:

boolean isValidBST(TreeNode root) {
    return isValidBST(root, null, null);
}

boolean isValidBST(TreeNode root, TreeNode min, TreeNode max) {
    if (root == null) return true;
    if (min != null && root.val <= min.val) return false;
    if (max != null && root.val >= max.val) return false;
    return isValidBST(root.left, min, root) 
        && isValidBST(root.right, root, max);
}

一、在 BST 中查找一个数是否存在

根据我们的指导思想,可以这样写代码:

boolean isInBST(TreeNode root, int target) {
    if (root == null) return false;
    if (root.val == target) return true;

    return isInBST(root.left, target)
        || isInBST(root.right, target);
}

这样写完全正确,充分证明了你的框架性思维已经养成。现在你可以考虑一点细节问题了:如何充分利用信息,把 BST 这个“左小右大”的特性用上?

很简单,其实不需要递归地搜索两边,类似二分查找思想,根据 target 和 root.val 的大小比较,就能排除一边。我们把上面的思路稍稍改动:

boolean isInBST(TreeNode root, int target) {
    if (root == null) return false;
    if (root.val == target)
        return true;
    if (root.val < target) 
        return isInBST(root.right, target);
    if (root.val > target)
        return isInBST(root.left, target);
    // root 该做的事做完了,顺带把框架也完成了,妙
}

于是,我们对原始框架进行改造,抽象出一套针对 BST 的遍历框架

void BST(TreeNode root, int target) {
    if (root.val == target)
        // 找到目标,做点什么
    if (root.val < target) 
        BST(root.right, target);
    if (root.val > target)
        BST(root.left, target);
}

二、在 BST 中插入一个数

对数据结构的操作无非遍历 + 访问,遍历就是“找”,访问就是“改”。具体到这个问题,插入一个数,就是先找到插入位置,然后进行插入操作。

上一个问题,我们总结了 BST 中的遍历框架,就是“找”的问题。直接套框架,加上“改”的操作即可。一旦涉及“改”,函数就要返回 TreeNode 类型,并且对递归调用的返回值进行接收。

TreeNode insertIntoBST(TreeNode root, int val) {
    // 找到空位置插入新节点
    if (root == null) return new TreeNode(val);
    // if (root.val == val)
    //     BST 中一般不会插入已存在元素
    if (root.val < val) 
        root.right = insertIntoBST(root.right, val);
    if (root.val > val) 
        root.left = insertIntoBST(root.left, val);
    return root;
}

三、在 BST 中删除一个数

这个问题稍微复杂,不过你有框架指导,难不住你。跟插入操作类似,先“找”再“改”,先把框架写出来再说:

TreeNode deleteNode(TreeNode root, int key) {
    if (root.val == key) {
        // 找到啦,进行删除
    } else if (root.val > key) {
        root.left = deleteNode(root.left, key);
    } else if (root.val < key) {
        root.right = deleteNode(root.right, key);
    }
    return root;
}

找到目标节点了,比方说是节点 A,如何删除这个节点,这是难点。因为删除节点的同时不能破坏 BST 的性质。有三种情况,用图片来说明。

情况 1:A 恰好是末端节点,两个子节点都为空,那么它可以当场去世了。

图片来自 LeetCode
1{:width=450}{:align=center}

if (root.left == null && root.right == null)
    return null;

情况 2:A 只有一个非空子节点,那么它要让这个孩子接替自己的位置。

图片来自 LeetCode
2{:width=450}{:align=center}

// 排除了情况 1 之后
if (root.left == null) return root.right;
if (root.right == null) return root.left;

情况 3:A 有两个子节点,麻烦了,为了不破坏 BST 的性质,A 必须找到左子树中最大的那个节点,或者右子树中最小的那个节点来接替自己。我们以第二种方式讲解。

图片来自 LeetCode
2{:width=450}{:align=center}

if (root.left != null && root.right != null) {
    // 找到右子树的最小节点
    TreeNode minNode = getMin(root.right);
    // 把 root 改成 minNode
    root.val = minNode.val;
    // 转而去删除 minNode
    root.right = deleteNode(root.right, minNode.val);
}

三种情况分析完毕,填入框架,简化一下代码:

TreeNode deleteNode(TreeNode root, int key) {
    if (root == null) return null;
    if (root.val == key) {
        // 这两个 if 把情况 1 和 2 都正确处理了
        if (root.left == null) return root.right;
        if (root.right == null) return root.left;
        // 处理情况 3
        TreeNode minNode = getMin(root.right);
        root.val = minNode.val;
        root.right = deleteNode(root.right, minNode.val);
    } else if (root.val > key) {
        root.left = deleteNode(root.left, key);
    } else if (root.val < key) {
        root.right = deleteNode(root.right, key);
    }
    return root;
}

TreeNode getMin(TreeNode node) {
    // BST 最左边的就是最小的
    while (node.left != null) node = node.left;
    return node;
} 

删除操作就完成了。注意一下,这个删除操作并不完美,因为我们一般不会通过 root.val = minNode.val 修改节点内部的值来交换节点,而是通过一系列略微复杂的链表操作交换 root 和 minNode 两个节点。因为具体应用中,val 域可能会很大,修改起来很耗时,而链表操作无非改一改指针,而不会去碰内部数据。

但这里忽略这个细节,旨在突出 BST 基本操作的共性,以及借助框架逐层细化问题的思维方式。

四、最后总结

通过这篇文章,你学会了如下几个技巧:

  1. 二叉树算法设计的总路线:把当前节点要做的事做好,其他的交给递归框架,不用当前节点操心。

  2. 如果当前节点会对下面的子节点有整体影响,可以通过辅助函数增长参数列表,借助参数传递信息。

  3. 在二叉树框架之上,扩展出一套 BST 遍历框架:

    void BST(TreeNode root, int target) {
        if (root.val == target)
            // 找到目标,做点什么
        if (root.val < target) 
            BST(root.right, target);
        if (root.val > target)
            BST(root.left, target);
    }
  4. 掌握了 BST 的基本操作。

_____________

点击 我的头像 看更多优质文章

统计信息

通过次数 提交次数 AC比率
270870 451642 60.0%

提交历史

提交时间 提交结果 执行时间 内存消耗 语言
上一篇:
99-恢复二叉搜索树(Recover Binary Search Tree)
下一篇:
101-对称二叉树(Symmetric Tree)
本文目录
本文目录