加载中...
1275-找出井字棋的获胜者(Find Winner on a Tic Tac Toe Game)
发表于:2021-12-03 | 分类: 简单
字数统计: 1.6k | 阅读时长: 7分钟 | 阅读量:

原文链接: https://leetcode-cn.com/problems/find-winner-on-a-tic-tac-toe-game

英文原文

Tic-tac-toe is played by two players A and B on a 3 x 3 grid. The rules of Tic-Tac-Toe are:

  • Players take turns placing characters into empty squares ' '.
  • The first player A always places 'X' characters, while the second player B always places 'O' characters.
  • 'X' and 'O' characters are always placed into empty squares, never on filled ones.
  • The game ends when there are three of the same (non-empty) character filling any row, column, or diagonal.
  • The game also ends if all squares are non-empty.
  • No more moves can be played if the game is over.

Given a 2D integer array moves where moves[i] = [rowi, coli] indicates that the ith move will be played on grid[rowi][coli]. return the winner of the game if it exists (A or B). In case the game ends in a draw return "Draw". If there are still movements to play return "Pending".

You can assume that moves is valid (i.e., it follows the rules of Tic-Tac-Toe), the grid is initially empty, and A will play first.

 

Example 1:

Input: moves = [[0,0],[2,0],[1,1],[2,1],[2,2]]
Output: "A"
Explanation: A wins, they always play first.

Example 2:

Input: moves = [[0,0],[1,1],[0,1],[0,2],[1,0],[2,0]]
Output: "B"
Explanation: B wins.

Example 3:

Input: moves = [[0,0],[1,1],[2,0],[1,0],[1,2],[2,1],[0,1],[0,2],[2,2]]
Output: "Draw"
Explanation: The game ends in a draw since there are no moves to make.

Example 4:

Input: moves = [[0,0],[1,1]]
Output: "Pending"
Explanation: The game has not finished yet.

 

Constraints:

  • 1 <= moves.length <= 9
  • moves[i].length == 2
  • 0 <= rowi, coli <= 2
  • There are no repeated elements on moves.
  • moves follow the rules of tic tac toe.

中文题目

A 和 B 在一个 3 x 3 的网格上玩井字棋。

井字棋游戏的规则如下:

  • 玩家轮流将棋子放在空方格 (" ") 上。
  • 第一个玩家 A 总是用 "X" 作为棋子,而第二个玩家 B 总是用 "O" 作为棋子。
  • "X" 和 "O" 只能放在空方格中,而不能放在已经被占用的方格上。
  • 只要有 3 个相同的(非空)棋子排成一条直线(行、列、对角线)时,游戏结束。
  • 如果所有方块都放满棋子(不为空),游戏也会结束。
  • 游戏结束后,棋子无法再进行任何移动。

给你一个数组 moves,其中每个元素是大小为 2 的另一个数组(元素分别对应网格的行和列),它按照 AB 的行动顺序(先 AB)记录了两人各自的棋子位置。

如果游戏存在获胜者(AB),就返回该游戏的获胜者;如果游戏以平局结束,则返回 "Draw";如果仍会有行动(游戏未结束),则返回 "Pending"。

你可以假设 moves 都 有效(遵循井字棋规则),网格最初是空的,A 将先行动。

 

示例 1:

输入:moves = [[0,0],[2,0],[1,1],[2,1],[2,2]]
输出:"A"
解释:"A" 获胜,他总是先走。
"X  "    "X  "    "X  "    "X  "    "X  "
"   " -> "   " -> " X " -> " X " -> " X "
"   "    "O  "    "O  "    "OO "    "OOX"

示例 2:

输入:moves = [[0,0],[1,1],[0,1],[0,2],[1,0],[2,0]]
输出:"B"
解释:"B" 获胜。
"X  "    "X  "    "XX "    "XXO"    "XXO"    "XXO"
"   " -> " O " -> " O " -> " O " -> "XO " -> "XO " 
"   "    "   "    "   "    "   "    "   "    "O  "

示例 3:

输入:moves = [[0,0],[1,1],[2,0],[1,0],[1,2],[2,1],[0,1],[0,2],[2,2]]
输出:"Draw"
输出:由于没有办法再行动,游戏以平局结束。
"XXO"
"OOX"
"XOX"

示例 4:

输入:moves = [[0,0],[1,1]]
输出:"Pending"
解释:游戏还没有结束。
"X  "
" O "
"   "

 

提示:

  • 1 <= moves.length <= 9
  • moves[i].length == 2
  • 0 <= moves[i][j] <= 2
  • moves 里没有重复的元素。
  • moves 遵循井字棋的规则。

通过代码

高赞题解

1. 题目分析

  • 井字棋总共只有$9$个格子,且赢面是固定的
  • 可以使用一个$9$位二进制数代表行走的结果,规定:
    • 井字棋坐标$[i,j]$对应于数字的第$3i+j$位
    • 每走一步棋等价于与对应的位进行(异)或运算
  • 判断游戏结果的方法:
    • 将一方的数字$num$与赢面对应的数字$k$进行与运算,若结果为$k$,此方获胜
    • 若双方都未获胜:
      • 若总步数为$9$步,则平局($Draw$)
      • 否则,未完成($Pending$)
  • (附1)赢面数字:
    • 井字棋的赢面只有$8$种($3$种横+$3$种竖+$2$种对角)
    • 计算举例:${[0,0],[0,1],[0,2]}$为横的一种赢面,对应的$9$位二进制数为$000000111$,即十进制下的$7$
    • 事实上,由对应规则可以得知:
      • $3$种横的赢面数字是公比为$8$的等比数列
      • $3$种竖的赢面数字是公比为$2$的等比数列
      • 总共**只需要计算出$4$个数字($1$种横+$1$种竖+$2$种对角)**,其余按倍数推导即可
    • 所有赢面数字分别为$7, 56(即7\times 8), 448(即7\times 8^2), 73, 146(即73\times 2), 292(即73\times 2^2), 273, 84$
  • (附2)我在评论区对使用位运算的思路进行了更细致的阐述,如果有不清楚的地方欢迎移步评论区~

2. Coding

public String tictactoe(int[][] moves) {
    // a, b record the moving results of A, B
    int a = 0, b = 0, len = moves.length;
    // ac records all cases of winning
    int[] ac = {7, 56, 448, 73, 146, 292, 273, 84};
    for(int i = 0; i < len; i ++){
        // if i is add
        if((i & 1) == 1){
            // record the step result
            b ^= 1 << (3 * moves[i][0] + moves[i][1]);
        }
        else {
            a ^= 1 << (3 * moves[i][0] + moves[i][1]);
        }
    }
    for(int i : ac){
        // if the moving result contains the winning case in record, then win
        if((a & i) == i){
            return "A";
        }
        if((b & i) == i){
            return "B";
        }
    }
    // or judge the result by the amount of steps
    return len == 9 ? "Draw" : "Pending";
}

时间复杂度$O(m+n)$,空间复杂度$O(m)$(事实上,此处$m=8,n=9$)

3. 执行结果

image.png

统计信息

通过次数 提交次数 AC比率
8450 15504 54.5%

提交历史

提交时间 提交结果 执行时间 内存消耗 语言
上一篇:
1269-停在原地的方案数(Number of Ways to Stay in the Same Place After Some Steps)
下一篇:
1276-不浪费原料的汉堡制作方案(Number of Burgers with No Waste of Ingredients)
本文目录
本文目录