英文原文
You are a product manager and currently leading a team to develop a new product. Unfortunately, the latest version of your product fails the quality check. Since each version is developed based on the previous version, all the versions after a bad version are also bad.
Suppose you have n
versions [1, 2, ..., n]
and you want to find out the first bad one, which causes all the following ones to be bad.
You are given an API bool isBadVersion(version)
which returns whether version
is bad. Implement a function to find the first bad version. You should minimize the number of calls to the API.
Example 1:
Input: n = 5, bad = 4 Output: 4 Explanation: call isBadVersion(3) -> false call isBadVersion(5) -> true call isBadVersion(4) -> true Then 4 is the first bad version.
Example 2:
Input: n = 1, bad = 1 Output: 1
Constraints:
1 <= bad <= n <= 231 - 1
中文题目
你是产品经理,目前正在带领一个团队开发新的产品。不幸的是,你的产品的最新版本没有通过质量检测。由于每个版本都是基于之前的版本开发的,所以错误的版本之后的所有版本都是错的。
假设你有 n
个版本 [1, 2, ..., n]
,你想找出导致之后所有版本出错的第一个错误的版本。
你可以通过调用 bool isBadVersion(version)
接口来判断版本号 version
是否在单元测试中出错。实现一个函数来查找第一个错误的版本。你应该尽量减少对调用 API 的次数。
示例 1:
输入:n = 5, bad = 4 输出:4 解释:调用 isBadVersion(3) -> false 调用 isBadVersion(5) -> true 调用 isBadVersion(4) -> true
所以,4 是第一个错误的版本。
示例 2:
输入:n = 1, bad = 1 输出:1
提示:
1 <= bad <= n <= 231 - 1
通过代码
高赞题解
方法一:二分查找
思路及算法
因为题目要求尽量减少调用检查接口的次数,所以不能对每个版本都调用检查接口,而是应该将调用检查接口的次数降到最低。
注意到一个性质:当一个版本为正确版本,则该版本之前的所有版本均为正确版本;当一个版本为错误版本,则该版本之后的所有版本均为错误版本。我们可以利用这个性质进行二分查找。
具体地,将左右边界分别初始化为 $1$ 和 $n$,其中 $n$ 是给定的版本数量。设定左右边界之后,每次我们都依据左右边界找到其中间的版本,检查其是否为正确版本。如果该版本为正确版本,那么第一个错误的版本必然位于该版本的右侧,我们缩紧左边界;否则第一个错误的版本必然位于该版本及该版本的左侧,我们缩紧右边界。
这样我们每判断一次都可以缩紧一次边界,而每次缩紧时两边界距离将变为原来的一半,因此我们至多只需要缩紧 $O(\log n)$ 次。
代码
class Solution {
public:
int firstBadVersion(int n) {
int left = 1, right = n;
while (left < right) { // 循环直至区间左右端点相同
int mid = left + (right - left) / 2; // 防止计算时溢出
if (isBadVersion(mid)) {
right = mid; // 答案在区间 [left, mid] 中
} else {
left = mid + 1; // 答案在区间 [mid+1, right] 中
}
}
// 此时有 left == right,区间缩为一个点,即为答案
return left;
}
};
public class Solution extends VersionControl {
public int firstBadVersion(int n) {
int left = 1, right = n;
while (left < right) { // 循环直至区间左右端点相同
int mid = left + (right - left) / 2; // 防止计算时溢出
if (isBadVersion(mid)) {
right = mid; // 答案在区间 [left, mid] 中
} else {
left = mid + 1; // 答案在区间 [mid+1, right] 中
}
}
// 此时有 left == right,区间缩为一个点,即为答案
return left;
}
}
public class Solution : VersionControl {
public int FirstBadVersion(int n) {
int left = 1, right = n;
while (left < right) { // 循环直至区间左右端点相同
int mid = left + (right - left) / 2; // 防止计算时溢出
if (IsBadVersion(mid)) {
right = mid; // 答案在区间 [left, mid] 中
} else {
left = mid + 1; // 答案在区间 [mid+1, right] 中
}
}
// 此时有 left == right,区间缩为一个点,即为答案
return left;
}
}
func firstBadVersion(n int) int {
return sort.Search(n, func(version int) bool { return isBadVersion(version) })
}
var solution = function(isBadVersion) {
return function(n) {
let left = 1, right = n;
while (left < right) { // 循环直至区间左右端点相同
const mid = Math.floor(left + (right - left) / 2); // 防止计算时溢出
if (isBadVersion(mid)) {
right = mid; // 答案在区间 [left, mid] 中
} else {
left = mid + 1; // 答案在区间 [mid+1, right] 中
}
}
// 此时有 left == right,区间缩为一个点,即为答案
return left;
};
};
int firstBadVersion(int n) {
int left = 1, right = n;
while (left < right) { // 循环直至区间左右端点相同
int mid = left + (right - left) / 2; // 防止计算时溢出
if (isBadVersion(mid)) {
right = mid; // 答案在区间 [left, mid] 中
} else {
left = mid + 1; // 答案在区间 [mid+1, right] 中
}
}
// 此时有 left == right,区间缩为一个点,即为答案
return left;
}
复杂度分析
时间复杂度:$O(\log n)$,其中 $n$ 是给定版本的数量。
空间复杂度:$O(1)$。我们只需要常数的空间保存若干变量。
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
218630 | 482728 | 45.3% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|
相似题目
题目 | 难度 |
---|---|
在排序数组中查找元素的第一个和最后一个位置 | 中等 |
搜索插入位置 | 简单 |
猜数字大小 | 简单 |