加载中...
561-数组拆分 I(Array Partition I)
发表于:2021-12-03 | 分类: 简单
字数统计: 361 | 阅读时长: 1分钟 | 阅读量:

原文链接: https://leetcode-cn.com/problems/array-partition-i

英文原文

Given an integer array nums of 2n integers, group these integers into n pairs (a1, b1), (a2, b2), ..., (an, bn) such that the sum of min(ai, bi) for all i is maximized. Return the maximized sum.

 

Example 1:

Input: nums = [1,4,3,2]
Output: 4
Explanation: All possible pairings (ignoring the ordering of elements) are:
1. (1, 4), (2, 3) -> min(1, 4) + min(2, 3) = 1 + 2 = 3
2. (1, 3), (2, 4) -> min(1, 3) + min(2, 4) = 1 + 2 = 3
3. (1, 2), (3, 4) -> min(1, 2) + min(3, 4) = 1 + 3 = 4
So the maximum possible sum is 4.

Example 2:

Input: nums = [6,2,6,5,1,2]
Output: 9
Explanation: The optimal pairing is (2, 1), (2, 5), (6, 6). min(2, 1) + min(2, 5) + min(6, 6) = 1 + 2 + 6 = 9.

 

Constraints:

  • 1 <= n <= 104
  • nums.length == 2 * n
  • -104 <= nums[i] <= 104

中文题目

给定长度为 2n 的整数数组 nums ,你的任务是将这些数分成 n 对, 例如 (a1, b1), (a2, b2), ..., (an, bn) ,使得从 1 到 nmin(ai, bi) 总和最大。

返回该 最大总和

 

示例 1:

输入:nums = [1,4,3,2]
输出:4
解释:所有可能的分法(忽略元素顺序)为:
1. (1, 4), (2, 3) -> min(1, 4) + min(2, 3) = 1 + 2 = 3
2. (1, 3), (2, 4) -> min(1, 3) + min(2, 4) = 1 + 2 = 3
3. (1, 2), (3, 4) -> min(1, 2) + min(3, 4) = 1 + 3 = 4
所以最大总和为 4

示例 2:

输入:nums = [6,2,6,5,1,2]
输出:9
解释:最优的分法为 (2, 1), (2, 5), (6, 6). min(2, 1) + min(2, 5) + min(6, 6) = 1 + 2 + 6 = 9

 

提示:

  • 1 <= n <= 104
  • nums.length == 2 * n
  • -104 <= nums[i] <= 104

通过代码

高赞题解

贪心解法

我们先对数组进行排序。

由于每两个数,我们只能选择当前小的一个进行累加。

因此我们猜想应该从第一个位置进行选择,然后隔一步选择下一个数。这样形成的序列的求和值最大。

class Solution {
    public int arrayPairSum(int[] nums) {
        int n = nums.length;
        Arrays.sort(nums);
        int ans = 0;
        for (int i = 0; i < n; i += 2) ans += nums[i];
        return ans;
    }
}
  • 时间复杂度:$O(n\log{n})$
  • 空间复杂度:$O(\log{n})$

证明

我们用反证法来证明下,为什么这样选择的序列的求和值一定是最大的:

猜想:对数组进行排序,从第一个位置进行选择,然后隔一步选择下一个数。这样形成的序列的求和值最大(下图黑标,代表当前被选择的数字)。

image.png

之所以我们能这么选择,是因为每一个被选择的数的「下一位位置」都对应着一个「大于等于」当前数的值(假设位置为 k ),使得当前数在 min(a,b) 关系中能被选择(下图红标,代表保证前面一个黑标能够被选择的辅助数)。

image.png

假如我们这样选择的序列求和不是最大值,那么说明至少我们有一个值选错了,应该选择更大的数才对。

那么意味着我们「某一位置」的黑标应该从当前位置指向更后的位置。

PS. 因为要满足 min(a, b) 的数才会被累加,因此每一个红标右移(变大)必然导致原本所对应的黑标发生「同样程度 或 不同程度」的右移(变大)

这会导致我们所有的红标黑标同时往后平移。

最终会导致我们最后一个黑标出现在最后一位,这时候最后一位黑标不得不与我们第 k 个位置的数形成一对。

image.png

我们看看这是求和序列的变化( k 位置前的求和项没有发生变化,我们从 k 位置开始分析):

  1. 原答案 = nums[k] + nums[k + 2] + ... + nums[n - 1]
  2. 调整后答案 = nums[k + 1] + nums[k + 3] + ... + nums[n - 2] + min(nums[n], nums[k])
    由于 min(nums[n], nums[k]) 中必然是 nums[k] 被选择。因此:
    调整后答案 = nums[k] + nums[k + 1] + nums[k + 3] + ... + nums[n - 2]

显然从原答案的每一项都「大于等于」调整后答案的每一项,因此不可能在「假想序列」中通过选择别的更大的数得到更优解,假想得证。


为什么要「证明」或「理解证明」?

证明的意义在于,你知道为什么这样做是对的

带来的好处是:

  1. 一道「贪心」题目能搞清楚证明,那么同类的「贪心」题目你就都会做了。否则就会停留在“我知道这道题可以这样贪心,别的题我不确定是否也能这样做”
  2. 在「面试」阶段,你可以很清晰讲解你的思路。让面试官从你的「思维方式」上喜欢上你( emmm 当然从颜值上也可以 :)

更多与证明/分析相关的题解:

765. 情侣牵手 : 【相信科学系列】为什么交换任意一个都是对的?:两种 100% 的解法:并查集 & 贪心
1579. 保证图可完全遍历 : 【相信科学系列】为什么先处理公共边是对的?含贪心证明 + 数组模板 ~

1631. 最小体力消耗路径 : 【相信科学系列】反证法证明思路的合法性

11. 盛最多水的容器 : 【刷穿LC】双指针+贪心解法【含证明】


最后

如果有帮助到你,请给题解点个赞和收藏,让更多的人看到 ~ (“▔□▔)/

也欢迎你 关注我 和 加入我们的「组队打卡」小群 ,提供写「证明」&「思路」的高质量题解

统计信息

通过次数 提交次数 AC比率
93934 121079 77.6%

提交历史

提交时间 提交结果 执行时间 内存消耗 语言
上一篇:
557-反转字符串中的单词 III(Reverse Words in a String III)
下一篇:
564-寻找最近的回文数(Find the Closest Palindrome)
本文目录
本文目录