原文链接: https://leetcode-cn.com/problems/prime-number-of-set-bits-in-binary-representation
英文原文
Given two integers left
and right
, return the count of numbers in the inclusive range [left, right]
having a prime number of set bits in their binary representation.
Recall that the number of set bits an integer has is the number of 1
's present when written in binary.
- For example,
21
written in binary is10101
, which has3
set bits.
Example 1:
Input: left = 6, right = 10 Output: 4 Explanation: 6 -> 110 (2 set bits, 2 is prime) 7 -> 111 (3 set bits, 3 is prime) 8 -> 1000 (1 set bit, 1 is not prime) 9 -> 1001 (2 set bits, 2 is prime) 10 -> 1010 (2 set bits, 2 is prime) 4 numbers have a prime number of set bits.
Example 2:
Input: left = 10, right = 15 Output: 5 Explanation: 10 -> 1010 (2 set bits, 2 is prime) 11 -> 1011 (3 set bits, 3 is prime) 12 -> 1100 (2 set bits, 2 is prime) 13 -> 1101 (3 set bits, 3 is prime) 14 -> 1110 (3 set bits, 3 is prime) 15 -> 1111 (4 set bits, 4 is not prime) 5 numbers have a prime number of set bits.
Constraints:
1 <= left <= right <= 106
0 <= right - left <= 104
中文题目
给定两个整数 L
和 R
,找到闭区间 [L, R]
范围内,计算置位位数为质数的整数个数。
(注意,计算置位代表二进制表示中1的个数。例如 21
的二进制表示 10101
有 3 个计算置位。还有,1 不是质数。)
示例 1:
输入: L = 6, R = 10 输出: 4 解释: 6 -> 110 (2 个计算置位,2 是质数) 7 -> 111 (3 个计算置位,3 是质数) 9 -> 1001 (2 个计算置位,2 是质数) 10-> 1010 (2 个计算置位,2 是质数)
示例 2:
输入: L = 10, R = 15 输出: 5 解释: 10 -> 1010 (2 个计算置位, 2 是质数) 11 -> 1011 (3 个计算置位, 3 是质数) 12 -> 1100 (2 个计算置位, 2 是质数) 13 -> 1101 (3 个计算置位, 3 是质数) 14 -> 1110 (3 个计算置位, 3 是质数) 15 -> 1111 (4 个计算置位, 4 不是质数)
注意:
L, R
是L <= R
且在[1, 10^6]
中的整数。R - L
的最大值为 10000。
通过代码
官方题解
方法一:
算法:
从 L
到 R
,我们首先计算该数字转换为二进制有多少个 1。如果数量是 2, 3, 5, 7, 11, 13, 17, 19
,则我们增加计数。最高是 19 的原因是 $R \leq 10^6 < 2^{20}$。
class Solution(object):
def countPrimeSetBits(self, L, R):
primes = {2, 3, 5, 7, 11, 13, 17, 19}
return sum(bin(x).count('1') in primes
for x in xrange(L, R+1))
class Solution {
public int countPrimeSetBits(int L, int R) {
int ans = 0;
for (int x = L; x <= R; ++x)
if (isSmallPrime(Integer.bitCount(x)))
ans++;
return ans;
}
public boolean isSmallPrime(int x) {
return (x == 2 || x == 3 || x == 5 || x == 7 ||
x == 11 || x == 13 || x == 17 || x == 19);
}
}
复杂度分析
- 时间复杂度:$O(D)$,其中 $D = R-L$,指的是所需判断数字的个数。
- 空间复杂度:$O(1)$。
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
18552 | 26459 | 70.1% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|
相似题目
题目 | 难度 |
---|---|
位1的个数 | 简单 |