原文链接: https://leetcode-cn.com/problems/peak-index-in-a-mountain-array
英文原文
Let's call an array arr
a mountain if the following properties hold:
arr.length >= 3
- There exists some
i
with0 < i < arr.length - 1
such that:arr[0] < arr[1] < ... arr[i-1] < arr[i]
arr[i] > arr[i+1] > ... > arr[arr.length - 1]
Given an integer array arr
that is guaranteed to be a mountain, return any i
such that arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i + 1] > ... > arr[arr.length - 1]
.
Example 1:
Input: arr = [0,1,0] Output: 1
Example 2:
Input: arr = [0,2,1,0] Output: 1
Example 3:
Input: arr = [0,10,5,2] Output: 1
Example 4:
Input: arr = [3,4,5,1] Output: 2
Example 5:
Input: arr = [24,69,100,99,79,78,67,36,26,19] Output: 2
Constraints:
3 <= arr.length <= 104
0 <= arr[i] <= 106
arr
is guaranteed to be a mountain array.
Follow up: Finding the
O(n)
is straightforward, could you find an O(log(n))
solution?中文题目
arr
称为 山脉数组 :
arr.length >= 3
- 存在
i
(0 < i < arr.length - 1
)使得:arr[0] < arr[1] < ... arr[i-1] < arr[i]
arr[i] > arr[i+1] > ... > arr[arr.length - 1]
给你由整数组成的山脉数组 arr
,返回任何满足 arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i + 1] > ... > arr[arr.length - 1]
的下标 i
。
示例 1:
输入:arr = [0,1,0] 输出:1
示例 2:
输入:arr = [0,2,1,0] 输出:1
示例 3:
输入:arr = [0,10,5,2] 输出:1
示例 4:
输入:arr = [3,4,5,1] 输出:2
示例 5:
输入:arr = [24,69,100,99,79,78,67,36,26,19] 输出:2
提示:
3 <= arr.length <= 104
0 <= arr[i] <= 106
- 题目数据保证
arr
是一个山脉数组
进阶:很容易想到时间复杂度 O(n)
的解决方案,你可以设计一个 O(log(n))
的解决方案吗?
通过代码
高赞题解
二分
往常我们使用「二分」进行查值,需要确保序列本身满足「二段性」:当选定一个端点(基准值)后,结合「一段满足 & 另一段不满足」的特性来实现“折半”的查找效果。
但本题求的是峰顶索引值,如果我们选定数组头部或者尾部元素,其实无法根据大小关系“直接”将数组分成两段。
但可以利用题目发现如下性质:由于 arr
数值各不相同,因此峰顶元素左侧必然满足严格单调递增,峰顶元素右侧必然不满足。
因此 以峰顶元素为分割点的 arr
数组,根据与 前一元素/后一元素 的大小关系,具有二段性:
- 峰顶元素左侧满足 $arr[i-1] < arr[i]$ 性质,右侧不满足
- 峰顶元素右侧满足 $arr[i] > arr[i+1]$ 性质,左侧不满足
因此我们可以选择任意条件,写出若干「二分」版本。
代码:
class Solution {
// 根据 arr[i-1] < arr[i] 在 [1,n-1] 范围内找值
// 峰顶元素为符合条件的最靠近中心的元素
public int peakIndexInMountainArray(int[] arr) {
int n = arr.length;
int l = 1, r = n - 1;
while (l < r) {
int mid = l + r + 1 >> 1;
if (arr[mid - 1] < arr[mid]) {
l = mid;
} else {
r = mid - 1;
}
}
return r;
}
}
class Solution {
// 根据 arr[i] > arr[i+1] 在 [0,n-2] 范围内找值
// 峰顶元素为符合条件的最靠近中心的元素值
public int peakIndexInMountainArray(int[] arr) {
int n = arr.length;
int l = 0, r = n - 2;
while (l < r) {
int mid = l + r >> 1;
if (arr[mid] > arr[mid + 1]) {
r = mid;
} else {
l = mid + 1;
}
}
return r;
}
}
class Solution {
// 根据 arr[i-1] > arr[i] 在 [1,n-1] 范围内找值
// 峰顶元素为符合条件的最靠近中心的元素的前一个值
public int peakIndexInMountainArray(int[] arr) {
int n = arr.length;
int l = 1, r = n - 1;
while (l < r) {
int mid = l + r >> 1;
if (arr[mid - 1] > arr[mid]) {
r = mid;
} else {
l = mid + 1;
}
}
return r - 1;
}
}
class Solution {
// 根据 arr[i] < arr[i+1] 在 [0,n-2] 范围内找值
// 峰顶元素为符合条件的最靠近中心的元素的下一个值
public int peakIndexInMountainArray(int[] arr) {
int n = arr.length;
int l = 0, r = n - 2;
while (l < r) {
int mid = l + r + 1 >> 1;
if (arr[mid] < arr[mid + 1]) {
l = mid;
} else {
r = mid - 1;
}
}
return r + 1;
}
}
- 时间复杂度:$O(\log{n})$
- 空间复杂度:$O(1)$
三分
事实上,我们还可以利用「三分」来解决这个问题。
顾名思义,「三分」就是使用两个端点将区间分成三份,然后通过每次否决三分之一的区间来逼近目标值。
具体的,由于峰顶元素为全局最大值,因此我们可以每次将当前区间分为 $[l, m1]$、$[m1, m2]$ 和 $[m2, r]$ 三段,如果满足 $arr[m1] > arr[m2]$,说明峰顶元素不可能存在与 $[m2, r]$ 中,让 $r = m2 - 1$ 即可。另外一个区间分析同理。
代码:
class Solution {
public int peakIndexInMountainArray(int[] arr) {
int n = arr.length;
int l = 0, r = n - 1;
while (l < r) {
int m1 = l + (r - l) / 3;
int m2 = r - (r - l) / 3;
if (arr[m1] > arr[m2]) {
r = m2 - 1;
} else {
l = m1 + 1;
}
}
return r;
}
}
- 时间复杂度:$O(\log{n})$
- 空间复杂度:$O(1)$
二分 & 三分 & k 分 ?
今天比较忙,没有及时回复评论。
看到了评论区有不少关于「三分」否决 1/3 区间存在疑问,感觉挺有代表性的,补充到题解好了 🤣
但必须说明一点,「二分」和「三分」在渐进复杂度上都是一样的,都可以通过换底公式转化为可忽略的常数,因此两者的复杂度都是 $O(\log{n})$。
因此选择「二分」还是「三分」取决于要解决的是什么问题:
- 二分通常用来解决单调函数的找 $target$ 问题,但进一步深入我们发现只需要满足「二段性」就能使用「二分」来找分割点;
- 三分则是解决单峰函数极值问题。
因此一般我们将「通过比较两个端点,每次否决 1/3 区间 来解决单峰最值问题」的做法称为「三分」;而不是简单根据单次循环内将区间分为多少份来判定是否为「三分」。
随手写了一段反例代码:
class Solution {
public int peakIndexInMountainArray(int[] arr) {
int left = 0, right = arr.length - 1;
while(left < right) {
int m1 = left + (right - left) / 3;
int m2 = right - (right - left + 2) / 3;
if (arr[m1] > arr[m1 + 1]) {
right = m1;
} else if (arr[m2] < arr[m2 + 1]) {
left = m2 + 1;
} else {
left = m1;
right = m2;
}
}
return left;
}
}
这并不是「三分」做法,最多称为「变形二分」。本质还是利用「二段性」来做分割的,只不过同时 check 了两个端点而已。
如果这算「三分」的话,那么我能在一次循环里面划分 $k - 1$ 个端点来实现 $k$ 分?
显然这是没有意义的,因为按照这种思路写出来的所谓的「四分」、「五分」、「k 分」是需要增加同等数量的分支判断的。这时候单次 while
决策就不能算作 $O(1)$ 了,而是需要在 $O(k)$ 的复杂度内决定在哪个分支,就跟上述代码有三个分支进行判断一样。 因此,这种写法只能算作是「变形二分」。
综上,只有「二分」和「三分」的概念,不存在所谓的 $k$ 分。 同时题解中的「三分」部分提供的做法就是标准的「三分」做法。
其他「二分」内容
题目简单?考虑加餐一道 01 背包变形题。
或是考虑加练如下「二分」题目 🍭🍭
注:以上目录整理来自 wiki,任何形式的转载引用请保留出处。
–
最后
如果有帮助到你,请给题解点个赞和收藏,让更多的人看到 ~ (“▔□▔)/
也欢迎你 关注我 和 加入我们的「组队打卡」小群 ,提供写「证明」&「思路」的高质量题解。
所有题解已经加入 刷题指南,欢迎 star 哦 ~
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
88121 | 123214 | 71.5% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|
相似题目
题目 | 难度 |
---|---|
寻找峰值 | 中等 |