原文链接: https://leetcode-cn.com/problems/binary-tree-inorder-traversal
英文原文
Given the root
of a binary tree, return the inorder traversal of its nodes' values.
Example 1:
Input: root = [1,null,2,3] Output: [1,3,2]
Example 2:
Input: root = [] Output: []
Example 3:
Input: root = [1] Output: [1]
Example 4:
Input: root = [1,2] Output: [2,1]
Example 5:
Input: root = [1,null,2] Output: [1,2]
Constraints:
- The number of nodes in the tree is in the range
[0, 100]
. -100 <= Node.val <= 100
Follow up: Recursive solution is trivial, could you do it iteratively?
中文题目
给定一个二叉树的根节点 root
,返回它的 中序 遍历。
示例 1:
输入:root = [1,null,2,3] 输出:[1,3,2]
示例 2:
输入:root = [] 输出:[]
示例 3:
输入:root = [1] 输出:[1]
示例 4:
输入:root = [1,2] 输出:[2,1]
示例 5:
输入:root = [1,null,2] 输出:[1,2]
提示:
- 树中节点数目在范围
[0, 100]
内 -100 <= Node.val <= 100
进阶: 递归算法很简单,你可以通过迭代算法完成吗?
通过代码
高赞题解
官方题解中介绍了三种方法来完成树的中序遍历,包括:
递归
借助栈的迭代方法
莫里斯遍历
在树的深度优先遍历中(包括前序、中序、后序遍历),递归方法最为直观易懂,但考虑到效率,我们通常不推荐使用递归。
栈迭代方法虽然提高了效率,但其嵌套循环却非常烧脑,不易理解,容易造成“一看就懂,一写就废”的窘况。而且对于不同的遍历顺序(前序、中序、后序),循环结构差异很大,更增加了记忆负担。
因此,我在这里介绍一种“颜色标记法”(瞎起的名字……),兼具栈迭代方法的高效,又像递归方法一样简洁易懂,更重要的是,这种方法对于前序、中序、后序遍历,能够写出完全一致的代码。
其核心思想如下:
使用颜色标记节点的状态,新节点为白色,已访问的节点为灰色。
如果遇到的节点为白色,则将其标记为灰色,然后将其右子节点、自身、左子节点依次入栈。
如果遇到的节点为灰色,则将节点的值输出。
使用这种方法实现的中序遍历如下:
class Solution:
def inorderTraversal(self, root: TreeNode) -> List[int]:
WHITE, GRAY = 0, 1
res = []
stack = [(WHITE, root)]
while stack:
color, node = stack.pop()
if node is None: continue
if color == WHITE:
stack.append((WHITE, node.right))
stack.append((GRAY, node))
stack.append((WHITE, node.left))
else:
res.append(node.val)
return res
如要实现前序、后序遍历,只需要调整左右子节点的入栈顺序即可。
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
620764 | 821616 | 75.6% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|
相似题目
题目 | 难度 |
---|---|
验证二叉搜索树 | 中等 |
二叉树的前序遍历 | 简单 |
二叉树的后序遍历 | 简单 |
二叉搜索树迭代器 | 中等 |
二叉搜索树中第K小的元素 | 中等 |
最接近的二叉搜索树值 II | 困难 |
二叉搜索树中的中序后继 | 中等 |
将二叉搜索树转化为排序的双向链表 | 中等 |
二叉搜索树节点最小距离 | 简单 |