英文原文
You are given an integer n
, which indicates that there are n
courses labeled from 1
to n
. You are also given a 2D integer array relations
where relations[j] = [prevCoursej, nextCoursej]
denotes that course prevCoursej
has to be completed before course nextCoursej
(prerequisite relationship). Furthermore, you are given a 0-indexed integer array time
where time[i]
denotes how many months it takes to complete the (i+1)th
course.
You must find the minimum number of months needed to complete all the courses following these rules:
- You may start taking a course at any time if the prerequisites are met.
- Any number of courses can be taken at the same time.
Return the minimum number of months needed to complete all the courses.
Note: The test cases are generated such that it is possible to complete every course (i.e., the graph is a directed acyclic graph).
Example 1:
Input: n = 3, relations = [[1,3],[2,3]], time = [3,2,5] Output: 8 Explanation: The figure above represents the given graph and the time required to complete each course. We start course 1 and course 2 simultaneously at month 0. Course 1 takes 3 months and course 2 takes 2 months to complete respectively. Thus, the earliest time we can start course 3 is at month 3, and the total time required is 3 + 5 = 8 months.
Example 2:
Input: n = 5, relations = [[1,5],[2,5],[3,5],[3,4],[4,5]], time = [1,2,3,4,5] Output: 12 Explanation: The figure above represents the given graph and the time required to complete each course. You can start courses 1, 2, and 3 at month 0. You can complete them after 1, 2, and 3 months respectively. Course 4 can be taken only after course 3 is completed, i.e., after 3 months. It is completed after 3 + 4 = 7 months. Course 5 can be taken only after courses 1, 2, 3, and 4 have been completed, i.e., after max(1,2,3,7) = 7 months. Thus, the minimum time needed to complete all the courses is 7 + 5 = 12 months.
Constraints:
1 <= n <= 5 * 104
0 <= relations.length <= min(n * (n - 1) / 2, 5 * 104)
relations[j].length == 2
1 <= prevCoursej, nextCoursej <= n
prevCoursej != nextCoursej
- All the pairs
[prevCoursej, nextCoursej]
are unique. time.length == n
1 <= time[i] <= 104
- The given graph is a directed acyclic graph.
中文题目
给你一个整数 n
,表示有 n
节课,课程编号从 1
到 n
。同时给你一个二维整数数组 relations
,其中 relations[j] = [prevCoursej, nextCoursej]
,表示课程 prevCoursej
必须在课程 nextCoursej
之前 完成(先修课的关系)。同时给你一个下标从 0 开始的整数数组 time
,其中 time[i]
表示完成第 (i+1)
门课程需要花费的 月份 数。
请你根据以下规则算出完成所有课程所需要的 最少 月份数:
- 如果一门课的所有先修课都已经完成,你可以在 任意 时间开始这门课程。
- 你可以 同时 上 任意门课程 。
请你返回完成所有课程所需要的 最少 月份数。
注意:测试数据保证一定可以完成所有课程(也就是先修课的关系构成一个有向无环图)。
示例 1:
输入:n = 3, relations = [[1,3],[2,3]], time = [3,2,5] 输出:8 解释:上图展示了输入数据所表示的先修关系图,以及完成每门课程需要花费的时间。 你可以在月份 0 同时开始课程 1 和 2 。 课程 1 花费 3 个月,课程 2 花费 2 个月。 所以,最早开始课程 3 的时间是月份 3 ,完成所有课程所需时间为 3 + 5 = 8 个月。
示例 2:
输入:n = 5, relations = [[1,5],[2,5],[3,5],[3,4],[4,5]], time = [1,2,3,4,5] 输出:12 解释:上图展示了输入数据所表示的先修关系图,以及完成每门课程需要花费的时间。 你可以在月份 0 同时开始课程 1 ,2 和 3 。 在月份 1,2 和 3 分别完成这三门课程。 课程 4 需在课程 3 之后开始,也就是 3 个月后。课程 4 在 3 + 4 = 7 月完成。 课程 5 需在课程 1,2,3 和 4 之后开始,也就是在 max(1,2,3,7) = 7 月开始。 所以完成所有课程所需的最少时间为 7 + 5 = 12 个月。
提示:
1 <= n <= 5 * 104
0 <= relations.length <= min(n * (n - 1) / 2, 5 * 104)
relations[j].length == 2
1 <= prevCoursej, nextCoursej <= n
prevCoursej != nextCoursej
- 所有的先修课程对
[prevCoursej, nextCoursej]
都是 互不相同 的。 time.length == n
1 <= time[i] <= 104
- 先修课程图是一个有向无环图。
通过代码
高赞题解
定义 $f[i]$ 表示完成第 $i$ 门课程需要花费的最少月份数。根据题意,只有当 $i$ 的所有先修课程都完成时,才可以开始 $i$,并且我们可以立即开始 $i$。
因此 $f[i]=\textit{time}[i] + \max f[j]$,这里 $j$ 是 $i$ 的所有先修课程。
由于题目保证图是一个有向无环图,所以一定存在拓扑排序。我们可以在求拓扑排序的同时,计算状态转移。
代码实现时,设当前节点为 $v$,我们可以在计算出 $f[v]$ 后,更新 $f[w]$ 的所有先修课程耗时的最大值,这里 $v$ 是 $w$ 的先修课程。
答案就是 $\max f[i]$。
相似题目:
func minimumTime(n int, relations [][]int, time []int) (ans int) {
g := make([][]int, n)
deg := make([]int, n)
for _, e := range relations {
v, w := e[0]-1, e[1]-1
g[v] = append(g[v], w)
deg[w]++
}
q := make([]int, 0, n)
for i, d := range deg {
if d == 0 {
q = append(q, i)
}
}
f := make([]int, n)
for len(q) > 0 {
v := q[0]
q = q[1:]
f[v] += time[v] // 补上当前课程的时间
ans = max(ans, f[v])
for _, w := range g[v] {
f[w] = max(f[w], f[v]) // 更新 f[w] 的所有先修课程耗时的最大值
if deg[w]--; deg[w] == 0 {
q = append(q, w)
}
}
}
return
}
func max(a, b int) int {
if b > a {
return b
}
return a
}
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
1955 | 3522 | 55.5% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|