原文链接: https://leetcode-cn.com/problems/check-if-an-original-string-exists-given-two-encoded-strings
英文原文
An original string, consisting of lowercase English letters, can be encoded by the following steps:
- Arbitrarily split it into a sequence of some number of non-empty substrings.
- Arbitrarily choose some elements (possibly none) of the sequence, and replace each with its length (as a numeric string).
- Concatenate the sequence as the encoded string.
For example, one way to encode an original string "abcdefghijklmnop"
might be:
- Split it as a sequence:
["ab", "cdefghijklmn", "o", "p"]
. - Choose the second and third elements to be replaced by their lengths, respectively. The sequence becomes
["ab", "12", "1", "p"]
. - Concatenate the elements of the sequence to get the encoded string:
"ab121p"
.
Given two encoded strings s1
and s2
, consisting of lowercase English letters and digits 1-9
(inclusive), return true
if there exists an original string that could be encoded as both s1
and s2
. Otherwise, return false
.
Note: The test cases are generated such that the number of consecutive digits in s1
and s2
does not exceed 3
.
Example 1:
Input: s1 = "internationalization", s2 = "i18n" Output: true Explanation: It is possible that "internationalization" was the original string. - "internationalization" -> Split: ["internationalization"] -> Do not replace any element -> Concatenate: "internationalization", which is s1. - "internationalization" -> Split: ["i", "nternationalizatio", "n"] -> Replace: ["i", "18", "n"] -> Concatenate: "i18n", which is s2
Example 2:
Input: s1 = "l123e", s2 = "44" Output: true Explanation: It is possible that "leetcode" was the original string. - "leetcode" -> Split: ["l", "e", "et", "cod", "e"] -> Replace: ["l", "1", "2", "3", "e"] -> Concatenate: "l123e", which is s1. - "leetcode" -> Split: ["leet", "code"] -> Replace: ["4", "4"] -> Concatenate: "44", which is s2.
Example 3:
Input: s1 = "a5b", s2 = "c5b" Output: false Explanation: It is impossible. - The original string encoded as s1 must start with the letter 'a'. - The original string encoded as s2 must start with the letter 'c'.
Example 4:
Input: s1 = "112s", s2 = "g841" Output: true Explanation: It is possible that "gaaaaaaaaaaaas" was the original string - "gaaaaaaaaaaaas" -> Split: ["g", "aaaaaaaaaaaa", "s"] -> Replace: ["1", "12", "s"] -> Concatenate: "112s", which is s1. - "gaaaaaaaaaaaas" -> Split: ["g", "aaaaaaaa", "aaaa", "s"] -> Replace: ["g", "8", "4", "1"] -> Concatenate: "g841", which is s2.
Example 5:
Input: s1 = "ab", s2 = "a2" Output: false Explanation: It is impossible. - The original string encoded as s1 has two letters. - The original string encoded as s2 has three letters.
Constraints:
1 <= s1.length, s2.length <= 40
s1
ands2
consist of digits1-9
(inclusive), and lowercase English letters only.- The number of consecutive digits in
s1
ands2
does not exceed3
.
中文题目
原字符串由小写字母组成,可以按下述步骤编码:
- 任意将其 分割 为由若干 非空 子字符串组成的一个 序列 。
- 任意选择序列中的一些元素(也可能不选择),然后将这些元素替换为元素各自的长度(作为一个数字型的字符串)。
- 重新 顺次连接 序列,得到编码后的字符串。
例如,编码 "abcdefghijklmnop"
的一种方法可以描述为:
- 将原字符串分割得到一个序列:
["ab", "cdefghijklmn", "o", "p"]
。 - 选出其中第二个和第三个元素并分别替换为它们自身的长度。序列变为
["ab", "12", "1", "p"]
。 - 重新顺次连接序列中的元素,得到编码后的字符串:
"ab121p"
。
给你两个编码后的字符串 s1
和 s2
,由小写英文字母和数字 1-9
组成。如果存在能够同时编码得到 s1
和 s2
原字符串,返回 true
;否则,返回 false
。
注意:生成的测试用例满足 s1
和 s2
中连续数字数不超过 3
。
示例 1:
输入:s1 = "internationalization", s2 = "i18n" 输出:true 解释:"internationalization" 可以作为原字符串 - "internationalization" -> 分割: ["internationalization"] -> 不替换任何元素 -> 连接: "internationalization",得到 s1 - "internationalization" -> 分割: ["i", "nternationalizatio", "n"] -> 替换: ["i", "18", "n"] -> 连接: "i18n",得到 s2
示例 2:
输入:s1 = "l123e", s2 = "44" 输出:true 解释:"leetcode" 可以作为原字符串 - "leetcode" -> 分割: ["l", "e", "et", "cod", "e"] -> 替换: ["l", "1", "2", "3", "e"] -> 连接: "l123e",得到 s1 - "leetcode" -> 分割: ["leet", "code"] -> 替换: ["4", "4"] -> 连接: "44",得到 s2
示例 3:
输入:s1 = "a5b", s2 = "c5b" 输出:false 解释:不存在这样的原字符串 - 编码为 s1 的字符串必须以字母 'a' 开头 - 编码为 s2 的字符串必须以字母 'c' 开头
示例 4:
输入:s1 = "112s", s2 = "g841" 输出:true 解释:"gaaaaaaaaaaaas" 可以作为原字符串 - "gaaaaaaaaaaaas" -> 分割: ["g", "aaaaaaaaaaaa", "s"] -> 替换: ["1", "12", "s"] -> 连接: "112s",得到 s1 - "gaaaaaaaaaaaas" -> 分割: ["g", "aaaaaaaa", "aaaa", "s"] -> 替换: ["g", "8", "4", "1"] -> 连接 "g841",得到 s2
示例 5:
输入:s1 = "ab", s2 = "a2" 输出:false 解释:不存在这样的原字符串 - 编码为 s1 的字符串由两个字母组成 - 编码为 s2 的字符串由三个字母组成
提示:
1 <= s1.length, s2.length <= 40
s1
和s2
仅由数字1-9
和小写英文字母组成s1
和s2
中连续数字数不超过3
通过代码
高赞题解
方法一:动态规划
我们用$dp[i][j]$表示将$s_1$的前$i$个字母和$s_2$的前$j$个字母匹配且不发生冲突时,可能的长度差值。
可以看到,存在以下的转移:
- $dp[i][j]\rightarrow dp[p][j]$,$\Delta\rightarrow\Delta+s_1[i][p]$,这要求$s_1[i][p]$是一个数字。这里我们额外限定$\Delta\le0$,以避免重复讨论。
- $dp[i][j]\rightarrow dp[i][q]$,$\Delta\rightarrow\Delta-s_2[j][q]$,这要求$s_2[j][q]$是一个数字。这里我们额外限定$\Delta\ge0$,以避免重复讨论。
- $dp[i][j]\rightarrow dp[i+1][j]$,$\Delta\rightarrow\Delta+1$,这要求$s_1[i]$是一个字母,并且$\Delta<0$,从而保证这个字母可以被$s_2$的剩余长度匹配掉。
- $dp[i][j]\rightarrow dp[i][j+1]$,$\Delta\rightarrow\Delta-1$,这要求$s_2[j]$是一个字母,并且$\Delta>0$,从而保证这个字母可以被$s_1$的剩余长度匹配掉。
- $dp[i][j]\rightarrow dp[i+1][j+1]$,$\Delta\rightarrow\Delta$,这要求$s_1[i]=s_2[j]$且都为字母,并且$\Delta=0$。
最后,我们检查$dp[N][M]$是否包含$0$即可。
- 时间复杂度$\mathcal{O}(NMD\cdot 10^D)$。其中$D$表示连续数字串的最长长度,本题中$D=3$。$D$决定了长度差的取值范围为$(-10^D, 10^D)$,这是因为连续的数字串前面至少有一个字母(或为字符串串首),而由我们的转移规则可知,字母只有在串的长度小于等于另一个串时才会被用于匹配,因此连续$D$个数字至多使得当前字符串比另一字符串长$10^D-1$。
- 空间复杂度$\mathcal{O}(NM\cdot 10^D)$。
参考代码(C++)
class Solution {
bool isdigit(char ch) {
return ch >= '0' && ch <= '9';
}
public:
bool possiblyEquals(string s1, string s2) {
int n = s1.size(), m = s2.size();
vector<vector<unordered_set<int>>> dp(n + 1, vector<unordered_set<int>>(m + 1));
dp[0][0].emplace(0);
for (int i = 0; i <= n; ++i) {
for (int j = 0; j <= m; ++j) {
for (int delta : dp[i][j]) {
int num = 0;
if (delta <= 0) {
for (int p = i; p < min(i + 3, n); ++p) {
if (isdigit(s1[p])) {
num = num * 10 + s1[p] - '0';
dp[p + 1][j].emplace(delta + num);
} else {
break;
}
}
}
num = 0;
if (delta >= 0) {
for (int q = j; q < min(j + 3, m); ++q) {
if (isdigit(s2[q])) {
num = num * 10 + s2[q] - '0';
dp[i][q + 1].emplace(delta - num);
} else {
break;
}
}
}
if (i < n && delta < 0 && !isdigit(s1[i]))
dp[i + 1][j].emplace(delta + 1);
if (j < m && delta > 0 && !isdigit(s2[j]))
dp[i][j + 1].emplace(delta - 1);
if (i < n && j < m && delta == 0 && s1[i] == s2[j])
dp[i + 1][j + 1].emplace(0);
}
}
}
return dp[n][m].count(0);
}
};
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
936 | 2615 | 35.8% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|