加载中...
239-滑动窗口最大值(Sliding Window Maximum)
发表于:2021-12-03 | 分类: 困难
字数统计: 439 | 阅读时长: 2分钟 | 阅读量:

原文链接: https://leetcode-cn.com/problems/sliding-window-maximum

英文原文

You are given an array of integers nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.

Return the max sliding window.

 

Example 1:

Input: nums = [1,3,-1,-3,5,3,6,7], k = 3
Output: [3,3,5,5,6,7]
Explanation: 
Window position                Max
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7

Example 2:

Input: nums = [1], k = 1
Output: [1]

Example 3:

Input: nums = [1,-1], k = 1
Output: [1,-1]

Example 4:

Input: nums = [9,11], k = 2
Output: [11]

Example 5:

Input: nums = [4,-2], k = 2
Output: [4]

 

Constraints:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104
  • 1 <= k <= nums.length

中文题目

给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。

返回滑动窗口中的最大值。

 

示例 1:

输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置                最大值
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7

示例 2:

输入:nums = [1], k = 1
输出:[1]

示例 3:

输入:nums = [1,-1], k = 1
输出:[1,-1]

示例 4:

输入:nums = [9,11], k = 2
输出:[11]

示例 5:

输入:nums = [4,-2], k = 2
输出:[4]

 

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104
  • 1 <= k <= nums.length

通过代码

高赞题解

一、搭建解题框架

这道题不复杂,难点在于如何在 $O(1)$ 时间算出每个「窗口」中的最大值,使得整个算法在线性时间完成。在之前的文章【一个通用思想解决股票问题】中我们探讨过类似的场景,得到一个结论:

在一堆数字中,已知最值,如果给这堆数添加一个数,那么比较一下就可以很快算出最值;但如果减少一个数,就不一定能很快得到最值了,而要遍历所有数重新找最值。

回到这道题的场景,每个窗口前进的时候,要添加一个数同时减少一个数,所以想在 $O(1)$ 的时间得出新的最值,就需要「单调队列」这种特殊的数据结构来辅助了。

一个普通的队列一定有这两个操作:

[]
class Queue { void push(int n); // 或 enqueue,在队尾加入元素 n void pop(); // 或 dequeue,删除队头元素 }

一个「单调队列」的操作也差不多:

[]
class MonotonicQueue { // 在队尾添加元素 n void push(int n); // 返回当前队列中的最大值 int max(); // 队头元素如果是 n,删除它 void pop(int n); }

当然,这几个 API 的实现方法肯定跟一般的 Queue 不一样,不过我们暂且不管,而且认为这几个操作的时间复杂度都是 $O(1)$,先把这道「滑动窗口」问题的解答框架搭出来:

[]
vector<int> maxSlidingWindow(vector<int>& nums, int k) { MonotonicQueue window; vector<int> res; for (int i = 0; i < nums.size(); i++) { if (i < k - 1) { //先把窗口的前 k - 1 填满 window.push(nums[i]); } else { // 窗口开始向前滑动 window.push(nums[i]); res.push_back(window.max()); window.pop(nums[i - k + 1]); // nums[i - k + 1] 就是窗口最后的元素 } } return res; }

无效的图片地址{:width=”400”}
{:align=center}

这个思路很简单,能理解吧?下面我们开始重头戏,单调队列的实现。

二、实现单调队列数据结构

首先我们要认识另一种数据结构:deque,即双端队列。很简单:

[]
class deque { // 在队头插入元素 n void push_front(int n); // 在队尾插入元素 n void push_back(int n); // 在队头删除元素 void pop_front(); // 在队尾删除元素 void pop_back(); // 返回队头元素 int front(); // 返回队尾元素 int back(); }

而且,这些操作的复杂度都是 O(1)。这其实不是啥稀奇的数据结构,用链表作为底层结构的话,很容易实现这些功能。

「单调队列」的核心思路和「单调栈」类似。单调队列的 push 方法依然在队尾添加元素,但是要把前面比新元素小的元素都删掉:

[]
class MonotonicQueue { private: deque<int> data; public: void push(int n) { while (!data.empty() && data.back() < n) data.pop_back(); data.push_back(n); } };

你可以想象,加入数字的大小代表人的体重,把前面体重不足的都压扁了,直到遇到更大的量级才停住。

无效的图片地址{:width=”400”}
{:align=center}

如果每个元素被加入时都这样操作,最终单调队列中的元素大小就会保持一个单调递减的顺序,因此我们的 max() API 可以可以这样写:

[]
int max() { return data.front(); }

pop() API 在队头删除元素 n,也很好写:

[]
void pop(int n) { if (!data.empty() && data.front() == n) data.pop_front(); }

之所以要判断 data.front() == n,是因为我们想删除的队头元素 n 可能已经被「压扁」了,这时候就不用删除了:

无效的图片地址{:width=”400”}
{:align=center}

至此,单调队列设计完毕,看下完整的解题代码:

[]
class MonotonicQueue { private: deque<int> data; public: void push(int n) { while (!data.empty() && data.back() < n) data.pop_back(); data.push_back(n); } int max() { return data.front(); } void pop(int n) { if (!data.empty() && data.front() == n) data.pop_front(); } }; vector<int> maxSlidingWindow(vector<int>& nums, int k) { MonotonicQueue window; vector<int> res; for (int i = 0; i < nums.size(); i++) { if (i < k - 1) { //先填满窗口的前 k - 1 window.push(nums[i]); } else { // 窗口向前滑动 window.push(nums[i]); res.push_back(window.max()); window.pop(nums[i - k + 1]); } } return res; }

三、算法复杂度分析

读者可能疑惑,push 操作中含有 while 循环,时间复杂度不是 $O(1)$ 呀,那么本算法的时间复杂度应该不是线性时间吧?

单独看 push 操作的复杂度确实不是 $O(1)$,但是算法整体的复杂度依然是 $O(N)$ 线性时间。要这样想,nums 中的每个元素最多被 push_back 和 pop_back 一次,没有任何多余操作,所以整体的复杂度还是 $O(N)$。

空间复杂度就很简单了,就是窗口的大小 $O(k)$。

四、最后总结

有的读者可能觉得「单调队列」和「优先级队列」比较像,实际上差别很大的。

单调队列在添加元素的时候靠删除元素保持队列的单调性,相当于抽取出某个函数中单调递增(或递减)的部分;而优先级队列(二叉堆)相当于自动排序,差别大了去了。

如果本文对你有帮助,欢迎关注我,致力于把算法问题讲清楚~

统计信息

通过次数 提交次数 AC比率
211488 425890 49.7%

提交历史

提交时间 提交结果 执行时间 内存消耗 语言

相似题目

题目 难度
最小覆盖子串 困难
最小栈 简单
至多包含两个不同字符的最长子串 中等
粉刷房子 II 困难
上一篇:
237-删除链表中的节点(Delete Node in a Linked List)
下一篇:
240-搜索二维矩阵 II(Search a 2D Matrix II)
本文目录
本文目录