原文链接: https://leetcode-cn.com/problems/sliding-window-maximum
英文原文
You are given an array of integers nums
, there is a sliding window of size k
which is moving from the very left of the array to the very right. You can only see the k
numbers in the window. Each time the sliding window moves right by one position.
Return the max sliding window.
Example 1:
Input: nums = [1,3,-1,-3,5,3,6,7], k = 3 Output: [3,3,5,5,6,7] Explanation: Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
Example 2:
Input: nums = [1], k = 1 Output: [1]
Example 3:
Input: nums = [1,-1], k = 1 Output: [1,-1]
Example 4:
Input: nums = [9,11], k = 2 Output: [11]
Example 5:
Input: nums = [4,-2], k = 2 Output: [4]
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
1 <= k <= nums.length
中文题目
给你一个整数数组 nums
,有一个大小为 k
的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k
个数字。滑动窗口每次只向右移动一位。
返回滑动窗口中的最大值。
示例 1:
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3 输出:[3,3,5,5,6,7] 解释: 滑动窗口的位置 最大值 --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
示例 2:
输入:nums = [1], k = 1 输出:[1]
示例 3:
输入:nums = [1,-1], k = 1 输出:[1,-1]
示例 4:
输入:nums = [9,11], k = 2 输出:[11]
示例 5:
输入:nums = [4,-2], k = 2 输出:[4]
提示:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
1 <= k <= nums.length
通过代码
高赞题解
一、搭建解题框架
这道题不复杂,难点在于如何在 $O(1)$ 时间算出每个「窗口」中的最大值,使得整个算法在线性时间完成。在之前的文章【一个通用思想解决股票问题】中我们探讨过类似的场景,得到一个结论:
在一堆数字中,已知最值,如果给这堆数添加一个数,那么比较一下就可以很快算出最值;但如果减少一个数,就不一定能很快得到最值了,而要遍历所有数重新找最值。
回到这道题的场景,每个窗口前进的时候,要添加一个数同时减少一个数,所以想在 $O(1)$ 的时间得出新的最值,就需要「单调队列」这种特殊的数据结构来辅助了。
一个普通的队列一定有这两个操作:
class Queue {
void push(int n);
// 或 enqueue,在队尾加入元素 n
void pop();
// 或 dequeue,删除队头元素
}
一个「单调队列」的操作也差不多:
class MonotonicQueue {
// 在队尾添加元素 n
void push(int n);
// 返回当前队列中的最大值
int max();
// 队头元素如果是 n,删除它
void pop(int n);
}
当然,这几个 API 的实现方法肯定跟一般的 Queue 不一样,不过我们暂且不管,而且认为这几个操作的时间复杂度都是 $O(1)$,先把这道「滑动窗口」问题的解答框架搭出来:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
MonotonicQueue window;
vector<int> res;
for (int i = 0; i < nums.size(); i++) {
if (i < k - 1) { //先把窗口的前 k - 1 填满
window.push(nums[i]);
} else { // 窗口开始向前滑动
window.push(nums[i]);
res.push_back(window.max());
window.pop(nums[i - k + 1]);
// nums[i - k + 1] 就是窗口最后的元素
}
}
return res;
}
{:width=”400”}
{:align=center}
这个思路很简单,能理解吧?下面我们开始重头戏,单调队列的实现。
二、实现单调队列数据结构
首先我们要认识另一种数据结构:deque,即双端队列。很简单:
class deque {
// 在队头插入元素 n
void push_front(int n);
// 在队尾插入元素 n
void push_back(int n);
// 在队头删除元素
void pop_front();
// 在队尾删除元素
void pop_back();
// 返回队头元素
int front();
// 返回队尾元素
int back();
}
而且,这些操作的复杂度都是 O(1)。这其实不是啥稀奇的数据结构,用链表作为底层结构的话,很容易实现这些功能。
「单调队列」的核心思路和「单调栈」类似。单调队列的 push 方法依然在队尾添加元素,但是要把前面比新元素小的元素都删掉:
class MonotonicQueue {
private:
deque<int> data;
public:
void push(int n) {
while (!data.empty() && data.back() < n)
data.pop_back();
data.push_back(n);
}
};
你可以想象,加入数字的大小代表人的体重,把前面体重不足的都压扁了,直到遇到更大的量级才停住。
{:width=”400”}
{:align=center}
如果每个元素被加入时都这样操作,最终单调队列中的元素大小就会保持一个单调递减的顺序,因此我们的 max() API 可以可以这样写:
int max() {
return data.front();
}
pop() API 在队头删除元素 n,也很好写:
void pop(int n) {
if (!data.empty() && data.front() == n)
data.pop_front();
}
之所以要判断 data.front() == n
,是因为我们想删除的队头元素 n 可能已经被「压扁」了,这时候就不用删除了:
{:width=”400”}
{:align=center}
至此,单调队列设计完毕,看下完整的解题代码:
class MonotonicQueue {
private:
deque<int> data;
public:
void push(int n) {
while (!data.empty() && data.back() < n)
data.pop_back();
data.push_back(n);
}
int max() { return data.front(); }
void pop(int n) {
if (!data.empty() && data.front() == n)
data.pop_front();
}
};
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
MonotonicQueue window;
vector<int> res;
for (int i = 0; i < nums.size(); i++) {
if (i < k - 1) { //先填满窗口的前 k - 1
window.push(nums[i]);
} else { // 窗口向前滑动
window.push(nums[i]);
res.push_back(window.max());
window.pop(nums[i - k + 1]);
}
}
return res;
}
三、算法复杂度分析
读者可能疑惑,push 操作中含有 while 循环,时间复杂度不是 $O(1)$ 呀,那么本算法的时间复杂度应该不是线性时间吧?
单独看 push 操作的复杂度确实不是 $O(1)$,但是算法整体的复杂度依然是 $O(N)$ 线性时间。要这样想,nums 中的每个元素最多被 push_back 和 pop_back 一次,没有任何多余操作,所以整体的复杂度还是 $O(N)$。
空间复杂度就很简单了,就是窗口的大小 $O(k)$。
四、最后总结
有的读者可能觉得「单调队列」和「优先级队列」比较像,实际上差别很大的。
单调队列在添加元素的时候靠删除元素保持队列的单调性,相当于抽取出某个函数中单调递增(或递减)的部分;而优先级队列(二叉堆)相当于自动排序,差别大了去了。
如果本文对你有帮助,欢迎关注我,致力于把算法问题讲清楚~
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
211488 | 425890 | 49.7% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|
相似题目
题目 | 难度 |
---|---|
最小覆盖子串 | 困难 |
最小栈 | 简单 |
至多包含两个不同字符的最长子串 | 中等 |
粉刷房子 II | 困难 |