加载中...
391-完美矩形(Perfect Rectangle)
发表于:2021-12-03 | 分类: 困难
字数统计: 1.8k | 阅读时长: 8分钟 | 阅读量:

原文链接: https://leetcode-cn.com/problems/perfect-rectangle

英文原文

Given an array rectangles where rectangles[i] = [xi, yi, ai, bi] represents an axis-aligned rectangle. The bottom-left point of the rectangle is (xi, yi) and the top-right point of it is (ai, bi).

Return true if all the rectangles together form an exact cover of a rectangular region.

 

Example 1:

Input: rectangles = [[1,1,3,3],[3,1,4,2],[3,2,4,4],[1,3,2,4],[2,3,3,4]]
Output: true
Explanation: All 5 rectangles together form an exact cover of a rectangular region.

Example 2:

Input: rectangles = [[1,1,2,3],[1,3,2,4],[3,1,4,2],[3,2,4,4]]
Output: false
Explanation: Because there is a gap between the two rectangular regions.

Example 3:

Input: rectangles = [[1,1,3,3],[3,1,4,2],[1,3,2,4],[3,2,4,4]]
Output: false
Explanation: Because there is a gap in the top center.

Example 4:

Input: rectangles = [[1,1,3,3],[3,1,4,2],[1,3,2,4],[2,2,4,4]]
Output: false
Explanation: Because two of the rectangles overlap with each other.

 

Constraints:

  • 1 <= rectangles.length <= 2 * 104
  • rectangles[i].length == 4
  • -105 <= xi, yi, ai, bi <= 105

中文题目

给你一个数组 rectangles ,其中 rectangles[i] = [xi, yi, ai, bi] 表示一个坐标轴平行的矩形。这个矩形的左下顶点是 (xi, yi) ,右上顶点是 (ai, bi)

如果所有矩形一起精确覆盖了某个矩形区域,则返回 true ;否则,返回 false

 

示例 1:

输入:rectangles = [[1,1,3,3],[3,1,4,2],[3,2,4,4],[1,3,2,4],[2,3,3,4]]
输出:true
解释:5 个矩形一起可以精确地覆盖一个矩形区域。 

示例 2:

输入:rectangles = [[1,1,2,3],[1,3,2,4],[3,1,4,2],[3,2,4,4]]
输出:false
解释:两个矩形之间有间隔,无法覆盖成一个矩形。

示例 3:

输入:rectangles = [[1,1,3,3],[3,1,4,2],[1,3,2,4],[3,2,4,4]]
输出:false
解释:图形顶端留有空缺,无法覆盖成一个矩形。

示例 4:

输入:rectangles = [[1,1,3,3],[3,1,4,2],[1,3,2,4],[2,2,4,4]]
输出:false
解释:因为中间有相交区域,虽然形成了矩形,但不是精确覆盖。

 

提示:

  • 1 <= rectangles.length <= 2 * 104
  • rectangles[i].length == 4
  • -105 <= xi, yi, ai, bi <= 105

通过代码

高赞题解

扫描线

将每个矩形 $rectangles[i]$ 看做两条竖直方向的边,使用 $(x, y1, y2)$ 的形式进行存储(其中 $y1$ 代表该竖边的下端点,$y2$ 代表竖边的上端点),同时为了区分是矩形的左边还是右边,再引入一个标识位,即以四元组 $(x, y1, y2, flag)$ 的形式进行存储。

一个完美矩形的充要条件为:对于完美矩形的每一条非边缘的竖边,都「成对」出现(存在两条完全相同的左边和右边重叠在一起);对于完美矩形的两条边缘竖边,均独立为一条连续的(不重叠)的竖边。

如图(红色框的为「完美矩形的边缘竖边」,绿框的为「完美矩形的非边缘竖边」):

image.png

  • 绿色:非边缘竖边必然有成对的左右两条完全相同的竖边重叠在一起;
  • 红色:边缘竖边由于只有单边,必然不重叠,且连接成一条完成的竖边。

image.png

代码(感谢 @ricecake 同学提供的 Python3 代码):

[]
class Solution { public boolean isRectangleCover(int[][] rectangles) { int n = rectangles.length; int[][] rs = new int[n * 2][4]; for (int i = 0, idx = 0; i < n; i++) { int[] re = rectangles[i]; rs[idx++] = new int[]{re[0], re[1], re[3], 1}; rs[idx++] = new int[]{re[2], re[1], re[3], -1}; } Arrays.sort(rs, (a,b)->{ if (a[0] != b[0]) return a[0] - b[0]; return a[1] - b[1]; }); n *= 2; // 分别存储相同的横坐标下「左边的线段」和「右边的线段」 (y1, y2) List<int[]> l1 = new ArrayList<>(), l2 = new ArrayList<>(); for (int l = 0; l < n; ) { int r = l; l1.clear(); l2.clear(); // 找到横坐标相同部分 while (r < n && rs[r][0] == rs[l][0]) r++; for (int i = l; i < r; i++) { int[] cur = new int[]{rs[i][1], rs[i][2]}; List<int[]> list = rs[i][3] == 1 ? l1 : l2; if (list.isEmpty()) { list.add(cur); } else { int[] prev = list.get(list.size() - 1); if (cur[0] < prev[1]) return false; // 存在重叠 else if (cur[0] == prev[1]) prev[1] = cur[1]; // 首尾相连 else list.add(cur); } } if (l > 0 && r < n) { // 若不是完美矩形的边缘竖边,检查是否成对出现 if (l1.size() != l2.size()) return false; for (int i = 0; i < l1.size(); i++) { if (l1.get(i)[0] == l2.get(i)[0] && l1.get(i)[1] == l2.get(i)[1]) continue; return false; } } else { // 若是完美矩形的边缘竖边,检查是否形成完整一段 if (l1.size() + l2.size() != 1) return false; } l = r; } return true; } }
[]
class Solution: def isRectangleCover(self, rectangles: List[List[int]]) -> bool: if not rectangles: return False n = len(rectangles) # 解析数据,(x, y, a, b) -> (x, y, b, 1) ,(a, y, b, -1) # 最后一位表示是矩形的左边缘还是右边缘(即扫描线的“上升”和“下降”) rs = [] for rec in rectangles: x, y, a, b = rec rs.append([x, y, b, 1]) rs.append([a, y, b, -1]) rs.sort() l = r = 0 while r < len(rs): l1 = [] # 记录“上升”的线段 l2 = [] # 记录“下降”的线段 while r < len(rs) and rs[r][0] == rs[l][0]: r += 1 for i in range(l, r): # 遍历横坐标相同的线段 x, y1, y2, isUp = rs[i] curl = l1 if isUp == 1 else l2 if not curl: curl.append([y1, y2]) else: if curl[-1][1] > y1: # 有重叠 return False elif curl[-1][1] == y1: # 能连接上,进行连接 curl[-1][1] = y2 else: # 不能连接上,记录新的一段 curl.append([y1, y2]) # 若处理的是最左边的边或最右边的边,此时应连成一个线段 if l == 0 or r == len(rs): if len(l1) + len(l2) != 1: return False else: # 若处理的是中间的扫描线,此时上升的线段和下降的线段应完全相同才能正好重叠 if len(l1) != len(l2): return False for i in range(len(l1)): if l1[i] != l2[i]: return False l = r # 进入下一个横坐标的扫描 return True
  • 时间复杂度:将 rectangles 划分成边集的复杂度为 $O(n)$;对边集进行排序的复杂度为 $O(n\log{n})$,对排序好的边集进行遍历检查,每条边会被扫描线性次,复杂度为 $O(n)$。整体复杂度为 $O(n\log{n})$
  • 空间复杂度:$O(n)$

其他「扫描线」问题

考虑加练如下「扫描线」问题 🍭🍭🍭

题目 题解 难度 推荐指数
218. 天际线问题 LeetCode 题解链接 困难 🤩🤩🤩
391. 完美矩形 LeetCode 题解链接 困难 🤩🤩🤩🤩

注:以上目录整理来自 wiki,任何形式的转载引用请保留出处。


最后

如果有帮助到你,请给题解点个赞和收藏,让更多的人看到 ~ (“▔□▔)/

也欢迎你 关注我(公主号后台回复「送书」即可参与长期看题解学算法送实体书活动)或 加入「组队打卡」小群 ,提供写「证明」&「思路」的高质量题解。

所有题解已经加入 刷题指南,欢迎 star 哦 ~

统计信息

通过次数 提交次数 AC比率
21395 45626 46.9%

提交历史

提交时间 提交结果 执行时间 内存消耗 语言
上一篇:
389-找不同(Find the Difference)
下一篇:
393-UTF-8 编码验证(UTF-8 Validation)
本文目录
本文目录