加载中...
42-接雨水(Trapping Rain Water)
发表于:2021-12-03 | 分类: 困难
字数统计: 4k | 阅读时长: 17分钟 | 阅读量:

原文链接: https://leetcode-cn.com/problems/trapping-rain-water

英文原文

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it can trap after raining.

 

Example 1:

Input: height = [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6
Explanation: The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.

Example 2:

Input: height = [4,2,0,3,2,5]
Output: 9

 

Constraints:

  • n == height.length
  • 1 <= n <= 2 * 104
  • 0 <= height[i] <= 105

中文题目

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

 

示例 1:

输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。 

示例 2:

输入:height = [4,2,0,3,2,5]
输出:9

 

提示:

  • n == height.length
  • 1 <= n <= 2 * 104
  • 0 <= height[i] <= 105

通过代码

高赞题解

思路:

黑色的看成墙,蓝色的看成水,宽度一样,给定一个数组,每个数代表从左到右墙的高度,求出能装多少单位的水。也就是图中蓝色正方形的个数。

解法一:按行求

这是我最开始想到的一个解法,提交后直接 AC 了,自己都震惊了。就是先求高度为 $1$ 的水,再求高度为 $2$ 的水,再求高度为 $3$ 的水。

整个思路就是,求第 i 层的水,遍历每个位置,如果当前的高度小于 i,并且两边有高度大于等于 i 的,说明这个地方一定有水,水就可以加 $1$。

如果求高度为 i 的水,首先用一个变量 temp 保存当前累积的水,初始化为 $0$。从左到右遍历墙的高度,遇到高度大于等于 i 的时候,开始更新 temp。更新原则是遇到高度小于 i 的就把 temp 加 $1$,遇到高度大于等于 i 的,就把 temp 加到最终的答案 ans 里,并且 temp 置零,然后继续循环。

我们就以题目的例子讲一下。

先求第 $1$ 行的水。

image.png{:width=500}
{:align=center}

也就是红色区域中的水,数组是 height = [ 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1 ]

原则是高度小于 1temp ++,高度大于等于 1ans = ans + temp,temp = 0

temp 初始化为 0ans = 0

height[0] 等于 0 < 1,不更新。

height[1] 等于 1 >= 1,开始更新 temp

height[2] 等于 0 < 1temp = temp + 1 = 1

height[3] 等于 2 >= 1ans = ans + temp = 1temp = 0

height[4] 等于 1 >= 1ans = ans + temp = 1temp = 0

height[5] 等于 0 < 1temp = temp + 1 = 1

height[6] 等于 1 >= 1ans = ans + temp = 2temp = 0

剩下的 height[7] 到最后,高度都大于等于 1,更新 ans = ans + temp = 2temp = 0。而其实 temp 一直都是 0,所以 ans 没有变化。

再求第 2 行的水。

image.png{:width=500}
{:align=center}

也就是红色区域中的水,数组是 height = [ 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1 ]

原则是高度小于 2temp ++,高度大于等于 2ans = ans + temp,temp = 0

temp 初始化为 0ans 此时等于 2

height[0] 等于 0 < 2,不更新。

height[1] 等于 1 < 2,不更新。

height[2] 等于 0 < 2,不更新。

height[3] 等于 2 >= 2,开始更新

height[4] 等于 1 < 2temp = temp + 1 = 1

height[5] 等于 0 < 2temp = temp + 1 = 2

height[6] 等于 1 < 2temp = temp + 1 = 3

height[7] 等于 3 >= 2ans = ans + temp = 5temp = 0

height[8] 等于 2 >= 2ans = ans + temp = 3temp = 0

height[9] 等于 1 < 2temp = temp + 1 = 1

height[10] 等于 2 >= 2ans = ans + temp = 6temp = 0

height[11] 等于 1 < 2temp = temp + 1 = 1

然后结束循环,此时的 ans 就是6

再看第 3 层。

image.png{:width=600}
{:align=center}

按照之前的算法,之前的都是小于 3 的,不更新 temp,然后到 height[7] 等于 3,开始更新 temp,但是后边没有 height 大于等于 3 了,所以 ans 没有更新。

所以最终的 ans 就是 6

看下代码吧。

[-Java]
public int trap(int[] height) { int sum = 0; int max = getMax(height);//找到最大的高度,以便遍历。 for (int i = 1; i <= max; i++) { boolean isStart = false; //标记是否开始更新 temp int temp_sum = 0; for (int j = 0; j < height.length; j++) { if (isStart && height[j] < i) { temp_sum++; } if (height[j] >= i) { sum = sum + temp_sum; temp_sum = 0; isStart = true; } } } return sum; } private int getMax(int[] height) { int max = 0; for (int i = 0; i < height.length; i++) { if (height[i] > max) { max = height[i]; } } return max; }

时间复杂度:如果最大的数是 $m$,个数是 $n$,那么就是 $O(m*n)$。

空间复杂度:$O(1)$。

评论区提示这个解法现在 AC 不了了,会报超时,但还是放在这里吧。
下边讲一下, leetcode solution 提供的 4 个算法。

解法二:按列求

求每一列的水,我们只需要关注当前列,以及左边最高的墙,右边最高的墙就够了。

装水的多少,当然根据木桶效应,我们只需要看左边最高的墙和右边最高的墙中较矮的一个就够了。

所以,根据较矮的那个墙和当前列的墙的高度可以分为三种情况。

  • 较矮的墙的高度大于当前列的墙的高度

image.png{:width=500}
{:align=center}

把正在求的列左边最高的墙和右边最高的墙确定后,然后为了方便理解,我们把无关的墙去掉。

image.png{:width=500}
{:align=center}

这样就很清楚了,现在想象一下,往两边最高的墙之间注水。正在求的列会有多少水?

很明显,较矮的一边,也就是左边的墙的高度,减去当前列的高度就可以了,也就是 2 - 1 = 1,可以存一个单位的水。

  • 较矮的墙的高度小于当前列的墙的高度

image.png{:width=500}
{:align=center}

同样的,我们把其他无关的列去掉。

image.png{:width=500}
{:align=center}

想象下,往两边最高的墙之间注水。正在求的列会有多少水?

正在求的列不会有水,因为它大于了两边较矮的墙。

  • 较矮的墙的高度等于当前列的墙的高度。

    和上一种情况是一样的,不会有水。

image.png{:width=500}
{:align=center}

明白了这三种情况,程序就很好写了,遍历每一列,然后分别求出这一列两边最高的墙。找出较矮的一端,和当前列的高度比较,结果就是上边的三种情况。

[-Java]
public int trap(int[] height) { int sum = 0; //最两端的列不用考虑,因为一定不会有水。所以下标从 1 到 length - 2 for (int i = 1; i < height.length - 1; i++) { int max_left = 0; //找出左边最高 for (int j = i - 1; j >= 0; j--) { if (height[j] > max_left) { max_left = height[j]; } } int max_right = 0; //找出右边最高 for (int j = i + 1; j < height.length; j++) { if (height[j] > max_right) { max_right = height[j]; } } //找出两端较小的 int min = Math.min(max_left, max_right); //只有较小的一段大于当前列的高度才会有水,其他情况不会有水 if (min > height[i]) { sum = sum + (min - height[i]); } } return sum; }

时间复杂度:$O(n²)$,遍历每一列需要 $n$,找出左边最高和右边最高的墙加起来刚好又是一个 $n$,所以是 $n²$。

空间复杂度:$O(1)$。

解法三: 动态规划

我们注意到,解法二中。对于每一列,我们求它左边最高的墙和右边最高的墙,都是重新遍历一遍所有高度,这里我们可以优化一下。

首先用两个数组,max_left [i] 代表第 i 列左边最高的墙的高度,max_right[i] 代表第 i 列右边最高的墙的高度。(一定要注意下,第 i 列左(右)边最高的墙,是不包括自身的,和 leetcode 上边的讲的有些不同)

对于 max_left我们其实可以这样求。

max_left [i] = Max(max_left [i-1],height[i-1])。它前边的墙的左边的最高高度和它前边的墙的高度选一个较大的,就是当前列左边最高的墙了。

对于 max_right我们可以这样求。

max_right[i] = Max(max_right[i+1],height[i+1]) 。它后边的墙的右边的最高高度和它后边的墙的高度选一个较大的,就是当前列右边最高的墙了。

这样,我们再利用解法二的算法,就不用在 for 循环里每次重新遍历一次求 max_leftmax_right 了。

[-Java]
public int trap(int[] height) { int sum = 0; int[] max_left = new int[height.length]; int[] max_right = new int[height.length]; for (int i = 1; i < height.length - 1; i++) { max_left[i] = Math.max(max_left[i - 1], height[i - 1]); } for (int i = height.length - 2; i >= 0; i--) { max_right[i] = Math.max(max_right[i + 1], height[i + 1]); } for (int i = 1; i < height.length - 1; i++) { int min = Math.min(max_left[i], max_right[i]); if (min > height[i]) { sum = sum + (min - height[i]); } } return sum; }

时间复杂度:$O(n)$。

空间复杂度:$O(n)$,用来保存每一列左边最高的墙和右边最高的墙。

解法四:双指针

动态规划中,我们常常可以对空间复杂度进行进一步的优化。

例如这道题中,可以看到,max_left [ i ]max_right [ i ] 数组中的元素我们其实只用一次,然后就再也不会用到了。所以我们可以不用数组,只用一个元素就行了。我们先改造下 max_left

[-Java]
public int trap(int[] height) { int sum = 0; int max_left = 0; int[] max_right = new int[height.length]; for (int i = height.length - 2; i >= 0; i--) { max_right[i] = Math.max(max_right[i + 1], height[i + 1]); } for (int i = 1; i < height.length - 1; i++) { max_left = Math.max(max_left, height[i - 1]); int min = Math.min(max_left, max_right[i]); if (min > height[i]) { sum = sum + (min - height[i]); } } return sum; }

我们成功将 max_left 数组去掉了。但是会发现我们不能同时把 max_right 的数组去掉,因为最后的 for 循环是从左到右遍历的,而 max_right 的更新是从右向左的。

所以这里要用到两个指针,leftright,从两个方向去遍历。

那么什么时候从左到右,什么时候从右到左呢?根据下边的代码的更新规则,我们可以知道

[-Java]
max_left = Math.max(max_left, height[i - 1]);

height [ left - 1] 是可能成为 max_left 的变量, 同理,height [ right + 1 ] 是可能成为 right_max 的变量。

只要保证 height [ left - 1 ] < height [ right + 1 ] ,那么 max_left 就一定小于 max_right

因为 max_left 是由 height [ left - 1] 更新过来的,而 height [ left - 1 ] 是小于 height [ right + 1] 的,而 height [ right + 1 ] 会更新 max_right,所以间接的得出 max_left 一定小于 max_right

反之,我们就从右到左更。

[-Java]
public int trap(int[] height) { int sum = 0; int max_left = 0; int max_right = 0; int left = 1; int right = height.length - 2; // 加右指针进去 for (int i = 1; i < height.length - 1; i++) { //从左到右更 if (height[left - 1] < height[right + 1]) { max_left = Math.max(max_left, height[left - 1]); int min = max_left; if (min > height[left]) { sum = sum + (min - height[left]); } left++; //从右到左更 } else { max_right = Math.max(max_right, height[right + 1]); int min = max_right; if (min > height[right]) { sum = sum + (min - height[right]); } right--; } } return sum; }

时间复杂度: $O(n)$。

空间复杂度: $O(1)$。

解法五:栈

image.png{:width=500}
{:align=center}

说到栈,我们肯定会想到括号匹配了。我们仔细观察蓝色的部分,可以和括号匹配类比下。每次匹配出一对括号(找到对应的一堵墙),就计算这两堵墙中的水。

我们用栈保存每堵墙。

当遍历墙的高度的时候,如果当前高度小于栈顶的墙高度,说明这里会有积水,我们将墙的高度的下标入栈。

如果当前高度大于栈顶的墙的高度,说明之前的积水到这里停下,我们可以计算下有多少积水了。计算完,就把当前的墙继续入栈,作为新的积水的墙。

总体的原则就是,

  1. 当前高度小于等于栈顶高度,入栈,指针后移。

  2. 当前高度大于栈顶高度,出栈,计算出当前墙和栈顶的墙之间水的多少,然后计算当前的高度和新栈的高度的关系,重复第 2 步。直到当前墙的高度不大于栈顶高度或者栈空,然后把当前墙入栈,指针后移。

我们看具体的例子。

  • 首先将 height [ 0 ] 入栈。然后 current 指向的高度大于栈顶高度,所以把栈顶 height [ 0 ] 出栈,然后栈空了,再把 height [ 1 ] 入栈。current 后移。

image.png{:width=500}
{:align=center}

  • 然后 current 指向的高度小于栈顶高度,height [ 2 ] 入栈,current 后移。

image.png{:width=500}
{:align=center}

  • 然后 current 指向的高度大于栈顶高度,栈顶 height [ 2 ] 出栈。计算 height [ 3 ] 和新的栈顶之间的水。计算完之后继续判断 current 和新的栈顶的关系。

image.png{:width=500}
{:align=center}

  • current 指向的高度大于栈顶高度,栈顶 height [ 1 ] 出栈,栈空。所以把 height [ 3 ] 入栈。currtent 后移。

image.png{:width=500}
{:align=center}

  • 然后 current 指向的高度小于栈顶 height [ 3 ] 的高度,height [ 4 ] 入栈。current 后移。

image.png{:width=500}
{:align=center}

  • 然后 current 指向的高度小于栈顶 height [ 4 ] 的高度,height [ 5 ] 入栈。current 后移。

image.png{:width=500}
{:align=center}

  • 然后 current 指向的高度大于栈顶 height [ 5 ] 的高度,将栈顶 height [ 5 ] 出栈,然后计算 current 指向的墙和新栈顶 height [ 4 ] 之间的水。计算完之后继续判断 current 的指向和新栈顶的关系。此时 height [ 6 ] 不大于栈顶 height [ 4 ] ,所以将 height [ 6 ] 入栈。current 后移。

image.png{:width=600}
{:align=center}

  • 然后 current 指向的高度大于栈顶高度,将栈顶 height [ 6 ] 出栈。计算和新的栈顶 height [ 4 ] 组成两个边界中的水。然后判断 current 和新的栈顶 height [ 4 ] 的关系,依旧是大于,所以把 height [ 4 ] 出栈。计算 current 和 新的栈顶 height [ 3 ] 之间的水。然后判断 current 和新的栈顶 height [ 3 ] 的关系,依旧是大于,所以把 height [ 3 ] 出栈,栈空。将 current 指向的 height [ 7 ] 入栈。current 后移。

    其实不停的出栈,可以看做是在找与 7 匹配的墙,也就是 3 。

image.png{:width=500}
{:align=center}

而对于计算 current 指向墙和新的栈顶之间的水,根据图的关系,我们可以直接把这两个墙当做之前解法三的 max_leftmax_right,然后之前弹出的栈顶当做每次遍历的 height [ i ]。水量就是 Min ( max _ left ,max _ right ) - height [ i ],只不过这里需要乘上两个墙之间的距离。可以看下代码继续理解下。

[-Java]
public int trap6(int[] height) { int sum = 0; Stack<Integer> stack = new Stack<>(); int current = 0; while (current < height.length) { //如果栈不空并且当前指向的高度大于栈顶高度就一直循环 while (!stack.empty() && height[current] > height[stack.peek()]) { int h = height[stack.peek()]; //取出要出栈的元素 stack.pop(); //出栈 if (stack.empty()) { // 栈空就出去 break; } int distance = current - stack.peek() - 1; //两堵墙之前的距离。 int min = Math.min(height[stack.peek()], height[current]); sum = sum + distance * (min - h); } stack.push(current); //当前指向的墙入栈 current++; //指针后移 } return sum; }

时间复杂度:虽然 while 循环里套了一个 while 循环,但是考虑到每个元素最多访问两次,入栈一次和出栈一次,所以时间复杂度是 $O(n)$。

空间复杂度:$O(n)$。栈的空间。

总结:

解法二到解法三,利用动态规划,空间换时间,解法三到解法四,优化动态规划的空间,这一系列下来,让人心旷神怡。

统计信息

通过次数 提交次数 AC比率
359643 611147 58.8%

提交历史

提交时间 提交结果 执行时间 内存消耗 语言

相似题目

题目 难度
盛最多水的容器 中等
除自身以外数组的乘积 中等
接雨水 II 困难
倒水 中等
上一篇:
41-缺失的第一个正数(First Missing Positive)
下一篇:
43-字符串相乘(Multiply Strings)
本文目录
本文目录