英文原文
You are given k
identical eggs and you have access to a building with n
floors labeled from 1
to n
.
You know that there exists a floor f
where 0 <= f <= n
such that any egg dropped at a floor higher than f
will break, and any egg dropped at or below floor f
will not break.
Each move, you may take an unbroken egg and drop it from any floor x
(where 1 <= x <= n
). If the egg breaks, you can no longer use it. However, if the egg does not break, you may reuse it in future moves.
Return the minimum number of moves that you need to determine with certainty what the value of f
is.
Example 1:
Input: k = 1, n = 2 Output: 2 Explanation: Drop the egg from floor 1. If it breaks, we know that f = 0. Otherwise, drop the egg from floor 2. If it breaks, we know that f = 1. If it does not break, then we know f = 2. Hence, we need at minimum 2 moves to determine with certainty what the value of f is.
Example 2:
Input: k = 2, n = 6 Output: 3
Example 3:
Input: k = 3, n = 14 Output: 4
Constraints:
1 <= k <= 100
1 <= n <= 104
中文题目
给你 k
枚相同的鸡蛋,并可以使用一栋从第 1
层到第 n
层共有 n
层楼的建筑。
已知存在楼层 f
,满足 0 <= f <= n
,任何从 高于 f
的楼层落下的鸡蛋都会碎,从 f
楼层或比它低的楼层落下的鸡蛋都不会破。
每次操作,你可以取一枚没有碎的鸡蛋并把它从任一楼层 x
扔下(满足 1 <= x <= n
)。如果鸡蛋碎了,你就不能再次使用它。如果某枚鸡蛋扔下后没有摔碎,则可以在之后的操作中 重复使用 这枚鸡蛋。
请你计算并返回要确定 f
确切的值 的 最小操作次数 是多少?
示例 1:
输入:k = 1, n = 2 输出:2 解释: 鸡蛋从 1 楼掉落。如果它碎了,肯定能得出 f = 0 。 否则,鸡蛋从 2 楼掉落。如果它碎了,肯定能得出 f = 1 。 如果它没碎,那么肯定能得出 f = 2 。 因此,在最坏的情况下我们需要移动 2 次以确定 f 是多少。
示例 2:
输入:k = 2, n = 6 输出:3
示例 3:
输入:k = 3, n = 14 输出:4
提示:
1 <= k <= 100
1 <= n <= 104
通过代码
高赞题解
读完本文,你可以去力扣拿下如下题目:
———–
今天要聊一个很经典的算法问题,若干层楼,若干个鸡蛋,让你算出最少的尝试次数,找到鸡蛋恰好摔不碎的那层楼。国内大厂以及谷歌脸书面试都经常考察这道题,只不过他们觉得扔鸡蛋太浪费,改成扔杯子,扔破碗什么的。
具体的问题等会再说,但是这道题的解法技巧很多,光动态规划就好几种效率不同的思路,最后还有一种极其高效数学解法。秉承咱们号一贯的作风,拒绝奇技淫巧,拒绝过于诡异的技巧,因为这些技巧无法举一反三,学了也不划算。
下面就来用我们一直强调的动态规划通用思路来研究一下这道题。
一、解析题目
题目是这样:你面前有一栋从 1 到 N
共 N
层的楼,然后给你 K
个鸡蛋(K
至少为 1)。现在确定这栋楼存在楼层 0 <= F <= N
,在这层楼将鸡蛋扔下去,鸡蛋恰好没摔碎(高于 F
的楼层都会碎,低于 F
的楼层都不会碎)。现在问你,最坏情况下,你至少要扔几次鸡蛋,才能确定这个楼层 F
呢?
也就是让你找摔不碎鸡蛋的最高楼层 F
,但什么叫「最坏情况」下「至少」要扔几次呢?我们分别举个例子就明白了。
比方说现在先不管鸡蛋个数的限制,有 7 层楼,你怎么去找鸡蛋恰好摔碎的那层楼?
最原始的方式就是线性扫描:我先在 1 楼扔一下,没碎,我再去 2 楼扔一下,没碎,我再去 3 楼……
以这种策略,最坏情况应该就是我试到第 7 层鸡蛋也没碎(F = 7
),也就是我扔了 7 次鸡蛋。
先在你应该理解什么叫做「最坏情况」下了,鸡蛋破碎一定发生在搜索区间穷尽时,不会说你在第 1 层摔一下鸡蛋就碎了,这是你运气好,不是最坏情况。
现在再来理解一下什么叫「至少」要扔几次。依然不考虑鸡蛋个数限制,同样是 7 层楼,我们可以优化策略。
最好的策略是使用二分查找思路,我先去第 (1 + 7) / 2 = 4
层扔一下:
如果碎了说明 F
小于 4,我就去第 (1 + 3) / 2 = 2
层试……
如果没碎说明 F
大于等于 4,我就去第 (5 + 7) / 2 = 6
层试……
以这种策略,最坏情况应该是试到第 7 层鸡蛋还没碎(F = 7
),或者鸡蛋一直碎到第 1 层(F = 0
)。然而无论那种最坏情况,只需要试 log7
向上取整等于 3 次,比刚才尝试 7 次要少,这就是所谓的至少要扔几次。
PS:这有点像 Big O 表示法计算算法的复杂度。
实际上,如果不限制鸡蛋个数的话,二分思路显然可以得到最少尝试的次数,但问题是,现在给你了鸡蛋个数的限制 K
,直接使用二分思路就不行了。
比如说只给你 1 个鸡蛋,7 层楼,你敢用二分吗?你直接去第 4 层扔一下,如果鸡蛋没碎还好,但如果碎了你就没有鸡蛋继续测试了,无法确定鸡蛋恰好摔不碎的楼层 F
了。这种情况下只能用线性扫描的方法,算法返回结果应该是 7。
有的读者也许会有这种想法:二分查找排除楼层的速度无疑是最快的,那干脆先用二分查找,等到只剩 1 个鸡蛋的时候再执行线性扫描,这样得到的结果是不是就是最少的扔鸡蛋次数呢?
很遗憾,并不是,比如说把楼层变高一些,100 层,给你 2 个鸡蛋,你在 50 层扔一下,碎了,那就只能线性扫描 1~49 层了,最坏情况下要扔 50 次。
如果不要「二分」,变成「五分」「十分」都会大幅减少最坏情况下的尝试次数。比方说第一个鸡蛋每隔十层楼扔,在哪里碎了第二个鸡蛋一个个线性扫描,总共不会超过 20 次。
最优解其实是 14 次。最优策略非常多,而且并没有什么规律可言。
说了这么多废话,就是确保大家理解了题目的意思,而且认识到这个题目确实复杂,就连我们手算都不容易,如何用算法解决呢?
二、思路分析
对动态规划问题,直接套我们以前多次强调的框架即可:这个问题有什么「状态」,有什么「选择」,然后穷举。
**「状态」很明显,就是当前拥有的鸡蛋数 K
和需要测试的楼层数 N
**。随着测试的进行,鸡蛋个数可能减少,楼层的搜索范围会减小,这就是状态的变化。
「选择」其实就是去选择哪层楼扔鸡蛋。回顾刚才的线性扫描和二分思路,二分查找每次选择到楼层区间的中间去扔鸡蛋,而线性扫描选择一层层向上测试。不同的选择会造成状态的转移。
现在明确了「状态」和「选择」,动态规划的基本思路就形成了:肯定是个二维的 dp
数组或者带有两个状态参数的 dp
函数来表示状态转移;外加一个 for 循环来遍历所有选择,择最优的选择更新状态:
# 当前状态为 K 个鸡蛋,面对 N 层楼
# 返回这个状态下的最优结果
def dp(K, N):
int res
for 1 <= i <= N:
res = min(res, 这次在第 i 层楼扔鸡蛋)
return res
这段伪码还没有展示递归和状态转移,不过大致的算法框架已经完成了。
我们选择在第 i
层楼扔了鸡蛋之后,可能出现两种情况:鸡蛋碎了,鸡蛋没碎。注意,这时候状态转移就来了:
如果鸡蛋碎了,那么鸡蛋的个数 K
应该减一,搜索的楼层区间应该从 [1..N]
变为 [1..i-1]
共 i-1
层楼;
如果鸡蛋没碎,那么鸡蛋的个数 K
不变,搜索的楼层区间应该从 [1..N]
变为 [i+1..N]
共 N-i
层楼。
{:width=450}{:align=center}
PS:细心的读者可能会问,在第i层楼扔鸡蛋如果没碎,楼层的搜索区间缩小至上面的楼层,是不是应该包含第i层楼呀?不必,因为已经包含了。开头说了 F 是可以等于 0 的,向上递归后,第i层楼其实就相当于第 0 层,可以被取到,所以说并没有错误。
因为我们要求的是最坏情况下扔鸡蛋的次数,所以鸡蛋在第 i
层楼碎没碎,取决于那种情况的结果更大:
def dp(K, N):
for 1 <= i <= N:
# 最坏情况下的最少扔鸡蛋次数
res = min(res,
max(
dp(K - 1, i - 1), # 碎
dp(K, N - i) # 没碎
) + 1 # 在第 i 楼扔了一次
)
return res
递归的 base case 很容易理解:当楼层数 N
等于 0 时,显然不需要扔鸡蛋;当鸡蛋数 K
为 1 时,显然只能线性扫描所有楼层:
def dp(K, N):
if K == 1: return N
if N == 0: return 0
...
至此,其实这道题就解决了!只要添加一个备忘录消除重叠子问题即可:
def superEggDrop(K: int, N: int):
memo = dict()
def dp(K, N) -> int:
# base case
if K == 1: return N
if N == 0: return 0
# 避免重复计算
if (K, N) in memo:
return memo[(K, N)]
res = float('INF')
# 穷举所有可能的选择
for i in range(1, N + 1):
res = min(res,
max(
dp(K, N - i),
dp(K - 1, i - 1)
) + 1
)
# 记入备忘录
memo[(K, N)] = res
return res
return dp(K, N)
这个算法的时间复杂度是多少呢?动态规划算法的时间复杂度就是子问题个数 × 函数本身的复杂度。
函数本身的复杂度就是忽略递归部分的复杂度,这里 dp
函数中有一个 for 循环,所以函数本身的复杂度是 O(N)。
子问题个数也就是不同状态组合的总数,显然是两个状态的乘积,也就是 O(KN)。
所以算法的总时间复杂度是 O(K*N^2), 空间复杂度 O(KN)。
三、疑难解答
这个问题很复杂,但是算法代码却十分简洁,这就是动态规划的特性,穷举加备忘录/DP table 优化,真的没啥新意。
首先,有读者可能不理解代码中为什么用一个 for 循环遍历楼层 [1..N]
,也许会把这个逻辑和之前探讨的线性扫描混为一谈。其实不是的,这只是在做一次「选择」。
比方说你有 2 个鸡蛋,面对 10 层楼,你这次选择去哪一层楼扔呢?不知道,那就把这 10 层楼全试一遍。至于下次怎么选择不用你操心,有正确的状态转移,递归会算出每个选择的代价,我们取最优的那个就是最优解。
另外,这个问题还有更好的解法,比如修改代码中的 for 循环为二分搜索,可以将时间复杂度降为 O(K*N*logN);再改进动态规划解法可以进一步降为 O(KN);使用数学方法解决,时间复杂度达到最优 O(K*logN),空间复杂度达到 O(1)。
二分的解法也有点误导性,你很可能以为它跟我们之前讨论的二分思路扔鸡蛋有关系,实际上没有半毛钱关系。能用二分搜索是因为状态转移方程的函数图像具有单调性,可以快速找到最值。
二分搜索的优化思路也许是我们可以尽力尝试写出的,而修改状态转移的解法可能是不容易想到的,可以借此见识一下动态规划算法设计的玄妙,当做思维拓展。
二分搜索优化
之前提到过这个解法,核心是因为状态转移方程的单调性,这里可以具体展开看看。
首先简述一下原始动态规划的思路:
1、暴力穷举尝试在所有楼层 1 <= i <= N
扔鸡蛋,每次选择尝试次数最少的那一层;
2、每次扔鸡蛋有两种可能,要么碎,要么没碎;
3、如果鸡蛋碎了,F
应该在第 i
层下面,否则,F
应该在第 i
层上面;
4、鸡蛋是碎了还是没碎,取决于哪种情况下尝试次数更多,因为我们想求的是最坏情况下的结果。
核心的状态转移代码是这段:
# 当前状态为 K 个鸡蛋,面对 N 层楼
# 返回这个状态下的最优结果
def dp(K, N):
for 1 <= i <= N:
# 最坏情况下的最少扔鸡蛋次数
res = min(res,
max(
dp(K - 1, i - 1), # 碎
dp(K, N - i) # 没碎
) + 1 # 在第 i 楼扔了一次
)
return res
这个 for 循环就是下面这个状态转移方程的具体代码实现:
{:width=450}{:align=center}
如果能够理解这个状态转移方程,那么就很容易理解二分查找的优化思路。
首先我们根据 dp(K, N)
数组的定义(有 K
个鸡蛋面对 N
层楼,最少需要扔几次),很容易知道 K
固定时,这个函数随着 N
的增加一定是单调递增的,无论你策略多聪明,楼层增加测试次数一定要增加。
那么注意 dp(K - 1, i - 1)
和 dp(K, N - i)
这两个函数,其中 i
是从 1 到 N
单增的,如果我们固定 K
和 N
,把这两个函数看做关于 i
的函数,前者随着 i
的增加应该也是单调递增的,而后者随着 i
的增加应该是单调递减的:
{:width=450}{:align=center}
这时候求二者的较大值,再求这些最大值之中的最小值,其实就是求这两条直线交点,也就是红色折线的最低点嘛。
我们前文「二分查找只能用来查找元素吗」讲过,二分查找的运用很广泛,形如下面这种形式的 for 循环代码:
for (int i = 0; i < n; i++) {
if (isOK(i))
return i;
}
都很有可能可以运用二分查找来优化线性搜索的复杂度,回顾这两个 dp
函数的曲线,我们要找的最低点其实就是这种情况:
for (int i = 1; i <= N; i++) {
if (dp(K - 1, i - 1) == dp(K, N - i))
return dp(K, N - i);
}
熟悉二分搜索的同学肯定敏感地想到了,这不就是相当于求 Valley(山谷)值嘛,可以用二分查找来快速寻找这个点的,直接看代码吧,整体的思路还是一样,只是加快了搜索速度:
def superEggDrop(self, K: int, N: int) -> int:
memo = dict()
def dp(K, N):
if K == 1: return N
if N == 0: return 0
if (K, N) in memo:
return memo[(K, N)]
# for 1 <= i <= N:
# res = min(res,
# max(
# dp(K - 1, i - 1),
# dp(K, N - i)
# ) + 1
# )
res = float('INF')
# 用二分搜索代替线性搜索
lo, hi = 1, N
while lo <= hi:
mid = (lo + hi) // 2
broken = dp(K - 1, mid - 1) # 碎
not_broken = dp(K, N - mid) # 没碎
# res = min(max(碎,没碎) + 1)
if broken > not_broken:
hi = mid - 1
res = min(res, broken + 1)
else:
lo = mid + 1
res = min(res, not_broken + 1)
memo[(K, N)] = res
return res
return dp(K, N)
这个算法的时间复杂度是多少呢?动态规划算法的时间复杂度就是子问题个数 × 函数本身的复杂度。
函数本身的复杂度就是忽略递归部分的复杂度,这里 dp
函数中用了一个二分搜索,所以函数本身的复杂度是 O(logN)。
子问题个数也就是不同状态组合的总数,显然是两个状态的乘积,也就是 O(KN)。
所以算法的总时间复杂度是 O(K*N*logN), 空间复杂度 O(KN)。效率上比之前的算法 O(KN^2) 要高效一些。
重新定义状态转移
前文「不同定义有不同解法」就提过,找动态规划的状态转移本就是见仁见智,比较玄学的事情,不同的状态定义可以衍生出不同的解法,其解法和复杂程度都可能有巨大差异。这里就是一个很好的例子。
再回顾一下我们之前定义的 dp
数组含义:
def dp(k, n) -> int
# 当前状态为 k 个鸡蛋,面对 n 层楼
# 返回这个状态下最少的扔鸡蛋次数
用 dp 数组表示的话也是一样的:
dp[k][n] = m
# 当前状态为 k 个鸡蛋,面对 n 层楼
# 这个状态下最少的扔鸡蛋次数为 m
按照这个定义,就是确定当前的鸡蛋个数和面对的楼层数,就知道最小扔鸡蛋次数。最终我们想要的答案就是 dp(K, N)
的结果。
这种思路下,肯定要穷举所有可能的扔法的,用二分搜索优化也只是做了「剪枝」,减小了搜索空间,但本质思路没有变,还是穷举。
现在,我们稍微修改 dp
数组的定义,确定当前的鸡蛋个数和最多允许的扔鸡蛋次数,就知道能够确定 F
的最高楼层数。具体来说是这个意思:
dp[k][m] = n
# 当前有 k 个鸡蛋,可以尝试扔 m 次鸡蛋
# 这个状态下,最坏情况下最多能确切测试一栋 n 层的楼
# 比如说 dp[1][7] = 7 表示:
# 现在有 1 个鸡蛋,允许你扔 7 次;
# 这个状态下最多给你 7 层楼,
# 使得你可以确定楼层 F 使得鸡蛋恰好摔不碎
# (一层一层线性探查嘛)
这其实就是我们原始思路的一个「反向」版本,我们先不管这种思路的状态转移怎么写,先来思考一下这种定义之下,最终想求的答案是什么?
我们最终要求的其实是扔鸡蛋次数 m
,但是这时候 m
在状态之中而不是 dp
数组的结果,可以这样处理:
int superEggDrop(int K, int N) {
int m = 0;
while (dp[K][m] < N) {
m++;
// 状态转移...
}
return m;
}
题目不是给你 K
鸡蛋,N
层楼,让你求最坏情况下最少的测试次数 m
吗?while
循环结束的条件是 dp[K][m] == N
,也就是给你 K
个鸡蛋,测试 m
次,最坏情况下最多能测试 N
层楼。
注意看这两段描述,是完全一样的!所以说这样组织代码是正确的,关键就是状态转移方程怎么找呢?还得从我们原始的思路开始讲。之前的解法配了这样图帮助大家理解状态转移思路:
{:width=450}{:align=center}
这个图描述的仅仅是某一个楼层 i
,原始解法还得线性或者二分扫描所有楼层,要求最大值、最小值。但是现在这种 dp
定义根本不需要这些了,基于下面两个事实:
1、无论你在哪层楼扔鸡蛋,鸡蛋只可能摔碎或者没摔碎,碎了的话就测楼下,没碎的话就测楼上。
2、无论你上楼还是下楼,总的楼层数 = 楼上的楼层数 + 楼下的楼层数 + 1(当前这层楼)。
根据这个特点,可以写出下面的状态转移方程:
dp[k][m] = dp[k][m - 1] + dp[k - 1][m - 1] + 1
dp[k][m - 1]
就是楼上的楼层数,因为鸡蛋个数 k
不变,也就是鸡蛋没碎,扔鸡蛋次数 m
减一;
dp[k - 1][m - 1]
就是楼下的楼层数,因为鸡蛋个数 k
减一,也就是鸡蛋碎了,同时扔鸡蛋次数 m
减一。
PS:这个 m
为什么要减一而不是加一?之前定义得很清楚,这个 m
是一个允许的次数上界,而不是扔了几次。
{:width=450}{:align=center}
至此,整个思路就完成了,只要把状态转移方程填进框架即可:
int superEggDrop(int K, int N) {
// m 最多不会超过 N 次(线性扫描)
int[][] dp = new int[K + 1][N + 1];
// base case:
// dp[0][..] = 0
// dp[..][0] = 0
// Java 默认初始化数组都为 0
int m = 0;
while (dp[K][m] < N) {
m++;
for (int k = 1; k <= K; k++)
dp[k][m] = dp[k][m - 1] + dp[k - 1][m - 1] + 1;
}
return m;
}
如果你还觉得这段代码有点难以理解,其实它就等同于这样写:
for (int m = 1; dp[K][m] < N; m++)
for (int k = 1; k <= K; k++)
dp[k][m] = dp[k][m - 1] + dp[k - 1][m - 1] + 1;
看到这种代码形式就熟悉多了吧,因为我们要求的不是 dp
数组里的值,而是某个符合条件的索引 m
,所以用 while
循环来找到这个 m
而已。
这个算法的时间复杂度是多少?很明显就是两个嵌套循环的复杂度 O(KN)。
另外注意到 dp[m][k]
转移只和左边和左上的两个状态有关,所以很容易优化成一维 dp
数组,这里就不写了。
还可以再优化
再往下就要用一些数学方法了,不具体展开,就简单提一下思路吧。
在刚才的思路之上,注意函数 dp(m, k)
是随着 m
单增的,因为鸡蛋个数 k
不变时,允许的测试次数越多,可测试的楼层就越高。
这里又可以借助二分搜索算法快速逼近 dp[K][m] == N
这个终止条件,时间复杂度进一步下降为 O(KlogN),我们可以设 g(k, m) =
……
算了算了,打住吧。我觉得我们能够写出 O(K*N*logN) 的二分优化算法就行了,后面的这些解法呢,听个响鼓个掌就行了,把欲望限制在能力的范围之内才能拥有快乐!
不过可以肯定的是,根据二分搜索代替线性扫描 m
的取值,代码的大致框架肯定是修改穷举 m
的 for 循环:
// 把线性搜索改成二分搜索
// for (int m = 1; dp[K][m] < N; m++)
int lo = 1, hi = N;
while (lo < hi) {
int mid = (lo + hi) / 2;
if (... < N) {
lo = ...
} else {
hi = ...
}
for (int k = 1; k <= K; k++)
// 状态转移方程
}
简单总结一下吧,第一个二分优化是利用了 dp
函数的单调性,用二分查找技巧快速搜索答案;第二种优化是巧妙地修改了状态转移方程,简化了求解了流程,但相应的,解题逻辑比较难以想到;后续还可以用一些数学方法和二分搜索进一步优化第二种解法,不过看了看镜子中的发量,算了。
本文终,希望对你有一点启发。
_____________
点击 我的主页 看更多优质文章。
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
53144 | 182659 | 29.1% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|