原文链接: https://leetcode-cn.com/problems/stamping-the-sequence
英文原文
You are given two strings stamp
and target
. Initially, there is a string s
of length target.length
with all s[i] == '?'
.
In one turn, you can place stamp
over s
and replace every letter in the s
with the corresponding letter from stamp
.
- For example, if
stamp = "abc"
andtarget = "abcba"
, thens
is"?????"
initially. In one turn you can:<ul> <li>place <code>stamp</code> at index <code>0</code> of <code>s</code> to obtain <code>"abc??"</code>,</li> <li>place <code>stamp</code> at index <code>1</code> of <code>s</code> to obtain <code>"?abc?"</code>, or</li> <li>place <code>stamp</code> at index <code>2</code> of <code>s</code> to obtain <code>"??abc"</code>.</li> </ul> Note that <code>stamp</code> must be fully contained in the boundaries of <code>s</code> in order to stamp (i.e., you cannot place <code>stamp</code> at index <code>3</code> of <code>s</code>).</li>
We want to convert s
to target
using at most 10 * target.length
turns.
Return an array of the index of the left-most letter being stamped at each turn. If we cannot obtain target
from s
within 10 * target.length
turns, return an empty array.
Example 1:
Input: stamp = "abc", target = "ababc" Output: [0,2] Explanation: Initially s = "?????". - Place stamp at index 0 to get "abc??". - Place stamp at index 2 to get "ababc". [1,0,2] would also be accepted as an answer, as well as some other answers.
Example 2:
Input: stamp = "abca", target = "aabcaca" Output: [3,0,1] Explanation: Initially s = "???????". - Place stamp at index 3 to get "???abca". - Place stamp at index 0 to get "abcabca". - Place stamp at index 1 to get "aabcaca".
Constraints:
1 <= stamp.length <= target.length <= 1000
stamp
andtarget
consist of lowercase English letters.
中文题目
你想要用小写字母组成一个目标字符串 target
。
开始的时候,序列由 target.length
个 '?'
记号组成。而你有一个小写字母印章 stamp
。
在每个回合,你可以将印章放在序列上,并将序列中的每个字母替换为印章上的相应字母。你最多可以进行 10 * target.length
个回合。
举个例子,如果初始序列为 "?????",而你的印章 stamp
是 "abc"
,那么在第一回合,你可以得到 "abc??"、"?abc?"、"??abc"。(请注意,印章必须完全包含在序列的边界内才能盖下去。)
如果可以印出序列,那么返回一个数组,该数组由每个回合中被印下的最左边字母的索引组成。如果不能印出序列,就返回一个空数组。
例如,如果序列是 "ababc",印章是 "abc"
,那么我们就可以返回与操作 "?????" -> "abc??" -> "ababc" 相对应的答案 [0, 2]
;
另外,如果可以印出序列,那么需要保证可以在 10 * target.length
个回合内完成。任何超过此数字的答案将不被接受。
示例 1:
输入:stamp = "abc", target = "ababc" 输出:[0,2] ([1,0,2] 以及其他一些可能的结果也将作为答案被接受)
示例 2:
输入:stamp = "abca", target = "aabcaca" 输出:[3,0,1]
提示:
1 <= stamp.length <= target.length <= 1000
stamp
和target
只包含小写字母。
通过代码
官方题解
方法一:逆推
分析
如果我们正着考虑戳印序列,即将问号序列变为目标序列 target
,那么这个问题会很难下手,因为某一个戳印会将前面的戳印覆盖掉。但我们如果倒着考虑这个问题(逆推),即将目标序列 target
变为问号序列,那么这个问题就变得可解决了。
我们将 target
中从第 i
个字符开始的长度为 stamp.length
的字符串称为第 i
个窗口。在第一步时,只有和 stamp
完全匹配的窗口才能进行戳印,而被戳印的所有位置都会变成问号 ?
,在后续的戳印过程中,问号可以匹配任意字符。
例如 target
为 "aabcaca"
且 stamp
为 "abca"
,在逆推时,首先选择第 1
个窗口戳印,target
变为 "a????ca"
,随后选择第 3
,0
个窗口戳印,target
依次变为 "a??????"
,"???????"
。
算法
我们对每个窗口维护两个集合 made
和 todo
,前者表示和 stamp
可以匹配的位置,后者表示不可以匹配的位置(后者中只有某个位置的字符变成了问号,它才会变成可以匹配的位置)。只有当一个窗口的 todo
集合为空,这个窗口才可以被戳印,从而把一些字符变成问号。
我们用一个队列存储所有因为戳印而变成问号的字符位置。队列初始时包含所有 todo
集合一开始就为空的窗口对应的位置。当我们取出队列中的一个位置时,我们遍历所有覆盖了该位置的窗口,并且更新这些窗口的 todo
集合。如果 todo
集合变为空,那就说明产生了一个新的可被戳印的窗口,我们把这个窗口中所有未变成问号的字符的位置添加入队列中。
class Solution {
public int[] movesToStamp(String stamp, String target) {
int M = stamp.length(), N = target.length();
Queue<Integer> queue = new ArrayDeque();
boolean[] done = new boolean[N];
Stack<Integer> ans = new Stack();
List<Node> A = new ArrayList();
for (int i = 0; i <= N-M; ++i) {
// For each window [i, i+M), A[i] will contain
// info on what needs to change before we can
// reverse stamp at this window.
Set<Integer> made = new HashSet();
Set<Integer> todo = new HashSet();
for (int j = 0; j < M; ++j) {
if (target.charAt(i+j) == stamp.charAt(j))
made.add(i+j);
else
todo.add(i+j);
}
A.add(new Node(made, todo));
// If we can reverse stamp at i immediately,
// enqueue letters from this window.
if (todo.isEmpty()) {
ans.push(i);
for (int j = i; j < i + M; ++j) if (!done[j]) {
queue.add(j);
done[j] = true;
}
}
}
// For each enqueued letter (position),
while (!queue.isEmpty()) {
int i = queue.poll();
// For each window that is potentially affected,
// j: start of window
for (int j = Math.max(0, i-M+1); j <= Math.min(N-M, i); ++j) {
if (A.get(j).todo.contains(i)) { // This window is affected
A.get(j).todo.remove(i);
if (A.get(j).todo.isEmpty()) {
ans.push(j);
for (int m: A.get(j).made) if (!done[m]) {
queue.add(m);
done[m] = true;
}
}
}
}
}
for (boolean b: done)
if (!b) return new int[0];
int[] ret = new int[ans.size()];
int t = 0;
while (!ans.isEmpty())
ret[t++] = ans.pop();
return ret;
}
}
class Node {
Set<Integer> made, todo;
Node(Set<Integer> m, Set<Integer> t) {
made = m;
todo = t;
}
}
class Solution(object):
def movesToStamp(self, stamp, target):
M, N = len(stamp), len(target)
queue = collections.deque()
done = [False] * N
ans = []
A = []
for i in xrange(N - M + 1):
# For each window [i, i+M),
# A[i] will contain info on what needs to change
# before we can reverse stamp at i.
made, todo = set(), set()
for j, c in enumerate(stamp):
a = target[i+j]
if a == c:
made.add(i+j)
else:
todo.add(i+j)
A.append((made, todo))
# If we can reverse stamp at i immediately,
# enqueue letters from this window.
if not todo:
ans.append(i)
for j in xrange(i, i + len(stamp)):
if not done[j]:
queue.append(j)
done[j] = True
# For each enqueued letter,
while queue:
i = queue.popleft()
# For each window that is potentially affected,
# j: start of window
for j in xrange(max(0, i-M+1), min(N-M, i)+1):
if i in A[j][1]: # This window is affected
A[j][1].discard(i) # Remove it from todo list of this window
if not A[j][1]: # Todo list of this window is empty
ans.append(j)
for m in A[j][0]: # For each letter to potentially enqueue,
if not done[m]:
queue.append(m)
done[m] = True
return ans[::-1] if all(done) else []
复杂度分析
时间复杂度:$O(N(N-M))$,其中 $M$ 和 $N$ 分别是数组
stamp
和target
的长度。空间复杂度:$O(N(N-M))$。
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
1621 | 4243 | 38.2% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|