英文原文
A company is planning to interview 2n
people. Given the array costs
where costs[i] = [aCosti, bCosti]
, the cost of flying the ith
person to city a
is aCosti
, and the cost of flying the ith
person to city b
is bCosti
.
Return the minimum cost to fly every person to a city such that exactly n
people arrive in each city.
Example 1:
Input: costs = [[10,20],[30,200],[400,50],[30,20]] Output: 110 Explanation: The first person goes to city A for a cost of 10. The second person goes to city A for a cost of 30. The third person goes to city B for a cost of 50. The fourth person goes to city B for a cost of 20. The total minimum cost is 10 + 30 + 50 + 20 = 110 to have half the people interviewing in each city.
Example 2:
Input: costs = [[259,770],[448,54],[926,667],[184,139],[840,118],[577,469]] Output: 1859
Example 3:
Input: costs = [[515,563],[451,713],[537,709],[343,819],[855,779],[457,60],[650,359],[631,42]] Output: 3086
Constraints:
2 * n == costs.length
2 <= costs.length <= 100
costs.length
is even.1 <= aCosti, bCosti <= 1000
中文题目
公司计划面试 2n
人。给你一个数组 costs
,其中 costs[i] = [aCosti, bCosti]
。第 i
人飞往 a
市的费用为 aCosti
,飞往 b
市的费用为 bCosti
。
返回将每个人都飞到 a
、b
中某座城市的最低费用,要求每个城市都有 n
人抵达。
示例 1:
输入:costs = [[10,20],[30,200],[400,50],[30,20]] 输出:110 解释: 第一个人去 a 市,费用为 10。 第二个人去 a 市,费用为 30。 第三个人去 b 市,费用为 50。 第四个人去 b 市,费用为 20。 最低总费用为 10 + 30 + 50 + 20 = 110,每个城市都有一半的人在面试。
示例 2:
输入:costs = [[259,770],[448,54],[926,667],[184,139],[840,118],[577,469]] 输出:1859
示例 3:
输入:costs = [[515,563],[451,713],[537,709],[343,819],[855,779],[457,60],[650,359],[631,42]] 输出:3086
提示:
2 * n == costs.length
2 <= costs.length <= 100
costs.length
为偶数1 <= aCosti, bCosti <= 1000
通过代码
官方题解
方法一:贪心
分析
我们这样来看这个问题,公司首先将这 $2N$ 个人全都安排飞往 $B$ 市,再选出 $N$ 个人改变它们的行程,让他们飞往 $A$ 市。如果选择改变一个人的行程,那么公司将会额外付出 price_A - price_B
的费用,这个费用可正可负。
{:width=600}
{:align=center}
因此最优的方案是,选出 price_A - price_B
最小的 $N$ 个人,让他们飞往 A
市,其余人飞往 B
市。
算法
按照
price_A - price_B
从小到大排序;将前 $N$ 个人飞往
A
市,其余人飞往B
市,并计算出总费用。
class Solution:
def twoCitySchedCost(self, costs: List[List[int]]) -> int:
# Sort by a gain which company has
# by sending a person to city A and not to city B
costs.sort(key = lambda x : x[0] - x[1])
total = 0
n = len(costs) // 2
# To optimize the company expenses,
# send the first n persons to the city A
# and the others to the city B
for i in range(n):
total += costs[i][0] + costs[i + n][1]
return total
class Solution {
public int twoCitySchedCost(int[][] costs) {
// Sort by a gain which company has
// by sending a person to city A and not to city B
Arrays.sort(costs, new Comparator<int[]>() {
@Override
public int compare(int[] o1, int[] o2) {
return o1[0] - o1[1] - (o2[0] - o2[1]);
}
});
int total = 0;
int n = costs.length / 2;
// To optimize the company expenses,
// send the first n persons to the city A
// and the others to the city B
for (int i = 0; i < n; ++i) total += costs[i][0] + costs[i + n][1];
return total;
}
}
class Solution {
public:
int twoCitySchedCost(vector<vector<int>>& costs) {
// Sort by a gain which company has
// by sending a person to city A and not to city B
sort(begin(costs), end(costs),
[](const vector<int> &o1, const vector<int> &o2) {
return (o1[0] - o1[1] < o2[0] - o2[1]);
});
int total = 0;
int n = costs.size() / 2;
// To optimize the company expenses,
// send the first n persons to the city A
// and the others to the city B
for (int i = 0; i < n; ++i) total += costs[i][0] + costs[i + n][1];
return total;
}
};
复杂度分析
时间复杂度:$O(N \log N)$,需要对
price_A - price_B
进行排序。空间复杂度:$O(1)$。
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
17489 | 26532 | 65.9% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|