加载中...
1029-两地调度(Two City Scheduling)
发表于:2021-12-03 | 分类: 中等
字数统计: 443 | 阅读时长: 2分钟 | 阅读量:

原文链接: https://leetcode-cn.com/problems/two-city-scheduling

英文原文

A company is planning to interview 2n people. Given the array costs where costs[i] = [aCosti, bCosti], the cost of flying the ith person to city a is aCosti, and the cost of flying the ith person to city b is bCosti.

Return the minimum cost to fly every person to a city such that exactly n people arrive in each city.

 

Example 1:

Input: costs = [[10,20],[30,200],[400,50],[30,20]]
Output: 110
Explanation: 
The first person goes to city A for a cost of 10.
The second person goes to city A for a cost of 30.
The third person goes to city B for a cost of 50.
The fourth person goes to city B for a cost of 20.

The total minimum cost is 10 + 30 + 50 + 20 = 110 to have half the people interviewing in each city.

Example 2:

Input: costs = [[259,770],[448,54],[926,667],[184,139],[840,118],[577,469]]
Output: 1859

Example 3:

Input: costs = [[515,563],[451,713],[537,709],[343,819],[855,779],[457,60],[650,359],[631,42]]
Output: 3086

 

Constraints:

  • 2 * n == costs.length
  • 2 <= costs.length <= 100
  • costs.length is even.
  • 1 <= aCosti, bCosti <= 1000

中文题目

公司计划面试 2n 人。给你一个数组 costs ,其中 costs[i] = [aCosti, bCosti] 。第 i 人飞往 a 市的费用为 aCosti ,飞往 b 市的费用为 bCosti

返回将每个人都飞到 ab 中某座城市的最低费用,要求每个城市都有 n 人抵达

 

示例 1:

输入:costs = [[10,20],[30,200],[400,50],[30,20]]
输出:110
解释:
第一个人去 a 市,费用为 10。
第二个人去 a 市,费用为 30。
第三个人去 b 市,费用为 50。
第四个人去 b 市,费用为 20。

最低总费用为 10 + 30 + 50 + 20 = 110,每个城市都有一半的人在面试。

示例 2:

输入:costs = [[259,770],[448,54],[926,667],[184,139],[840,118],[577,469]]
输出:1859

示例 3:

输入:costs = [[515,563],[451,713],[537,709],[343,819],[855,779],[457,60],[650,359],[631,42]]
输出:3086

 

提示:

  • 2 * n == costs.length
  • 2 <= costs.length <= 100
  • costs.length 为偶数
  • 1 <= aCosti, bCosti <= 1000

通过代码

官方题解

方法一:贪心

分析

我们这样来看这个问题,公司首先将这 $2N$ 个人全都安排飞往 $B$ 市,再选出 $N$ 个人改变它们的行程,让他们飞往 $A$ 市。如果选择改变一个人的行程,那么公司将会额外付出 price_A - price_B 的费用,这个费用可正可负。

bla{:width=600}
{:align=center}

因此最优的方案是,选出 price_A - price_B 最小的 $N$ 个人,让他们飞往 A 市,其余人飞往 B 市。

算法

  • 按照 price_A - price_B 从小到大排序;

  • 将前 $N$ 个人飞往 A 市,其余人飞往 B 市,并计算出总费用。

[sol1]
class Solution: def twoCitySchedCost(self, costs: List[List[int]]) -> int: # Sort by a gain which company has # by sending a person to city A and not to city B costs.sort(key = lambda x : x[0] - x[1]) total = 0 n = len(costs) // 2 # To optimize the company expenses, # send the first n persons to the city A # and the others to the city B for i in range(n): total += costs[i][0] + costs[i + n][1] return total
[sol1]
class Solution { public int twoCitySchedCost(int[][] costs) { // Sort by a gain which company has // by sending a person to city A and not to city B Arrays.sort(costs, new Comparator<int[]>() { @Override public int compare(int[] o1, int[] o2) { return o1[0] - o1[1] - (o2[0] - o2[1]); } }); int total = 0; int n = costs.length / 2; // To optimize the company expenses, // send the first n persons to the city A // and the others to the city B for (int i = 0; i < n; ++i) total += costs[i][0] + costs[i + n][1]; return total; } }
[sol1]
class Solution { public: int twoCitySchedCost(vector<vector<int>>& costs) { // Sort by a gain which company has // by sending a person to city A and not to city B sort(begin(costs), end(costs), [](const vector<int> &o1, const vector<int> &o2) { return (o1[0] - o1[1] < o2[0] - o2[1]); }); int total = 0; int n = costs.size() / 2; // To optimize the company expenses, // send the first n persons to the city A // and the others to the city B for (int i = 0; i < n; ++i) total += costs[i][0] + costs[i + n][1]; return total; } };

复杂度分析

  • 时间复杂度:$O(N \log N)$,需要对 price_A - price_B 进行排序。

  • 空间复杂度:$O(1)$。

统计信息

通过次数 提交次数 AC比率
17489 26532 65.9%

提交历史

提交时间 提交结果 执行时间 内存消耗 语言
上一篇:
1030-距离顺序排列矩阵单元格(Matrix Cells in Distance Order)
下一篇:
1032-字符流(Stream of Characters)
本文目录
本文目录