原文链接: https://leetcode-cn.com/problems/maximum-sum-of-two-non-overlapping-subarrays
英文原文
Given an integer array nums
and two integers firstLen
and secondLen
, return the maximum sum of elements in two non-overlapping subarrays with lengths firstLen
and secondLen
.
The array with length firstLen
could occur before or after the array with length secondLen
, but they have to be non-overlapping.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [0,6,5,2,2,5,1,9,4], firstLen = 1, secondLen = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2.
Example 2:
Input: nums = [3,8,1,3,2,1,8,9,0], firstLen = 3, secondLen = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2.
Example 3:
Input: nums = [2,1,5,6,0,9,5,0,3,8], firstLen = 4, secondLen = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.
Constraints:
1 <= firstLen, secondLen <= 1000
2 <= firstLen + secondLen <= 1000
firstLen + secondLen <= nums.length <= 1000
0 <= nums[i] <= 1000
中文题目
给出非负整数数组 A
,返回两个非重叠(连续)子数组中元素的最大和,子数组的长度分别为 L
和 M
。(这里需要澄清的是,长为 L 的子数组可以出现在长为 M 的子数组之前或之后。)
从形式上看,返回最大的 V
,而 V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1])
并满足下列条件之一:
0 <= i < i + L - 1 < j < j + M - 1 < A.length
, 或0 <= j < j + M - 1 < i < i + L - 1 < A.length
.
示例 1:
输入:A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 输出:20 解释:子数组的一种选择中,[9] 长度为 1,[6,5] 长度为 2。
示例 2:
输入:A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 输出:29 解释:子数组的一种选择中,[3,8,1] 长度为 3,[8,9] 长度为 2。
示例 3:
输入:A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 输出:31 解释:子数组的一种选择中,[5,6,0,9] 长度为 4,[0,3,8] 长度为 3。
提示:
L >= 1
M >= 1
L + M <= A.length <= 1000
0 <= A[i] <= 1000
通过代码
高赞题解
这道题原来在英文版Leetcode上刷到过,当时记得最优办法非常精炼,这次在评论区里也没有找到有人写类似方法,于是复制粘贴过来。原作者是lee215,
https://leetcode.com/problems/maximum-sum-of-two-non-overlapping-subarrays/discuss/278251/JavaC%2B%2BPython-O(N)Time-O(1)-Space
只贴一下C++的:
int maxSumTwoNoOverlap(vector<int>& A, int L, int M) {
for (int i = 1; i < A.size(); ++i)
A[i] += A[i - 1];
int res = A[L + M - 1], Lmax = A[L - 1], Mmax = A[M - 1];
for (int i = L + M; i < A.size(); ++i) {
Lmax = max(Lmax, A[i - M] - A[i - L - M]);
Mmax = max(Mmax, A[i - L] - A[i - L - M]);
res = max(res, max(Lmax + A[i] - A[i - M], Mmax + A[i] - A[i - L]));
}
return res;
}
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
5176 | 9046 | 57.2% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|