英文原文
There are n
gas stations along a circular route, where the amount of gas at the ith
station is gas[i]
.
You have a car with an unlimited gas tank and it costs cost[i]
of gas to travel from the ith
station to its next (i + 1)th
station. You begin the journey with an empty tank at one of the gas stations.
Given two integer arrays gas
and cost
, return the starting gas station's index if you can travel around the circuit once in the clockwise direction, otherwise return -1
. If there exists a solution, it is guaranteed to be unique
Example 1:
Input: gas = [1,2,3,4,5], cost = [3,4,5,1,2] Output: 3 Explanation: Start at station 3 (index 3) and fill up with 4 unit of gas. Your tank = 0 + 4 = 4 Travel to station 4. Your tank = 4 - 1 + 5 = 8 Travel to station 0. Your tank = 8 - 2 + 1 = 7 Travel to station 1. Your tank = 7 - 3 + 2 = 6 Travel to station 2. Your tank = 6 - 4 + 3 = 5 Travel to station 3. The cost is 5. Your gas is just enough to travel back to station 3. Therefore, return 3 as the starting index.
Example 2:
Input: gas = [2,3,4], cost = [3,4,3] Output: -1 Explanation: You can't start at station 0 or 1, as there is not enough gas to travel to the next station. Let's start at station 2 and fill up with 4 unit of gas. Your tank = 0 + 4 = 4 Travel to station 0. Your tank = 4 - 3 + 2 = 3 Travel to station 1. Your tank = 3 - 3 + 3 = 3 You cannot travel back to station 2, as it requires 4 unit of gas but you only have 3. Therefore, you can't travel around the circuit once no matter where you start.
Constraints:
gas.length == n
cost.length == n
1 <= n <= 105
0 <= gas[i], cost[i] <= 104
中文题目
在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i]
升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
- 如果题目有解,该答案即为唯一答案。
- 输入数组均为非空数组,且长度相同。
- 输入数组中的元素均为非负数。
示例 1:
输入: gas = [1,2,3,4,5] cost = [3,4,5,1,2] 输出: 3 解释: 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。 因此,3 可为起始索引。
示例 2:
输入: gas = [2,3,4] cost = [3,4,3] 输出: -1 解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。 我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油 开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油 开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油 你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。 因此,无论怎样,你都不可能绕环路行驶一周。
通过代码
高赞题解
思想
该题可以使用图的思想来分析,时间复杂度 **O(N)**,空间复杂度 **O(1)**。
以该题为例:
gas = [1,2,3,4,5]
cost = [3,4,5,1,2]
下图的黑色折线图
即总油量剩余值
,若要满足题目的要求:跑完全程再回到起点,总油量剩余值
的任意部分都需要在X轴以上,且跑到终点时:总剩余汽油量 >= 0
。
为了让黑色折线图
任意部分都在 X 轴以上,我们需要向上移动黑色折线图
,直到所有点都在X轴或X轴以上。此时,处在X轴的点即为出发点。即黑色折线图
的最低值的位置:index = 3
。
柱状图
绿色:可添加的汽油gas[i]
橙色:消耗的汽油cose[i]
折线图:
虚线(蓝色):当前加油站的可用值
实线(黑色):从0
开始的总剩余汽油量
Java 实现
执行用时: 0 ms, 在所有 java 提交中击败了 100.00% 的用户
内存消耗: 37.2 MB, 在所有 java 提交中击败了 72.07% 的用户
public int canCompleteCircuit(int[] gas, int[] cost) {
int len = gas.length;
int spare = 0;
int minSpare = Integer.MAX_VALUE;
int minIndex = 0;
for (int i = 0; i < len; i++) {
spare += gas[i] - cost[i];
if (spare < minSpare) {
minSpare = spare;
minIndex = i;
}
}
return spare < 0 ? -1 : (minIndex + 1) % len;
}
时间复杂度:O(N)
空间复杂度:O(1)
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
135185 | 237594 | 56.9% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|