英文原文
A sequence of numbers is called arithmetic if it consists of at least two elements, and the difference between every two consecutive elements is the same. More formally, a sequence s
is arithmetic if and only if s[i+1] - s[i] == s[1] - s[0]
for all valid i
.
For example, these are arithmetic sequences:
1, 3, 5, 7, 9 7, 7, 7, 7 3, -1, -5, -9
The following sequence is not arithmetic:
1, 1, 2, 5, 7
You are given an array of n
integers, nums
, and two arrays of m
integers each, l
and r
, representing the m
range queries, where the ith
query is the range [l[i], r[i]]
. All the arrays are 0-indexed.
Return a list of boolean
elements answer
, where answer[i]
is true
if the subarray nums[l[i]], nums[l[i]+1], ... , nums[r[i]]
can be rearranged to form an arithmetic sequence, and false
otherwise.
Example 1:
Input: nums =[4,6,5,9,3,7]
, l =[0,0,2]
, r =[2,3,5]
Output:[true,false,true]
Explanation: In the 0th query, the subarray is [4,6,5]. This can be rearranged as [6,5,4], which is an arithmetic sequence. In the 1st query, the subarray is [4,6,5,9]. This cannot be rearranged as an arithmetic sequence. In the 2nd query, the subarray is[5,9,3,7]. This
can be rearranged as[3,5,7,9]
, which is an arithmetic sequence.
Example 2:
Input: nums = [-12,-9,-3,-12,-6,15,20,-25,-20,-15,-10], l = [0,1,6,4,8,7], r = [4,4,9,7,9,10] Output: [false,true,false,false,true,true]
Constraints:
n == nums.length
m == l.length
m == r.length
2 <= n <= 500
1 <= m <= 500
0 <= l[i] < r[i] < n
-105 <= nums[i] <= 105
中文题目
如果一个数列由至少两个元素组成,且每两个连续元素之间的差值都相同,那么这个序列就是 等差数列 。更正式地,数列 s
是等差数列,只需要满足:对于每个有效的 i
, s[i+1] - s[i] == s[1] - s[0]
都成立。
例如,下面这些都是 等差数列 :
1, 3, 5, 7, 9 7, 7, 7, 7 3, -1, -5, -9
下面的数列 不是等差数列 :
1, 1, 2, 5, 7
给你一个由 n
个整数组成的数组 nums
,和两个由 m
个整数组成的数组 l
和 r
,后两个数组表示 m
组范围查询,其中第 i
个查询对应范围 [l[i], r[i]]
。所有数组的下标都是 从 0 开始 的。
返回 boolean
元素构成的答案列表 answer
。如果子数组 nums[l[i]], nums[l[i]+1], ... , nums[r[i]]
可以 重新排列 形成 等差数列 ,answer[i]
的值就是 true
;否则answer[i]
的值就是 false
。
示例 1:
输入:nums =[4,6,5,9,3,7]
, l =[0,0,2]
, r =[2,3,5]
输出:[true,false,true]
解释: 第 0 个查询,对应子数组 [4,6,5] 。可以重新排列为等差数列 [6,5,4] 。 第 1 个查询,对应子数组 [4,6,5,9] 。无法重新排列形成等差数列。 第 2 个查询,对应子数组[5,9,3,7] 。
可以重新排列为等差数列[3,5,7,9] 。
示例 2:
输入:nums = [-12,-9,-3,-12,-6,15,20,-25,-20,-15,-10], l = [0,1,6,4,8,7], r = [4,4,9,7,9,10] 输出:[false,true,false,false,true,true]
提示:
n == nums.length
m == l.length
m == r.length
2 <= n <= 500
1 <= m <= 500
0 <= l[i] < r[i] < n
-105 <= nums[i] <= 105
通过代码
高赞题解
思路上是一个子数组的其他元素都减去子数组中的最小值, 得到数组D,
如果子数组为等差序列, 那么数组D的最小值d为D的共有因子, D的所有元素都除以d, 就能够构成1, 2, 3, 4,…
如果不能整除或者不能构成1, 2, 3, 4, 那么, 就不是等差序列.
注意, 有一个特例需要判断: 当d = 0的时候, 不能作为分母.
当d = 0的时候, 只需要判断子序列是否是一个常数, 即可.
class Solution:
def checkArithmeticSubarrays(self, nums: List[int], L: List[int], R: List[int]) -> List[bool]:
def check(l, r):
if r - l == 1:
return True
A = nums[l : r + 1]
m = min(A)
D = []
for e in A:
if e != m:
D.append(e - m)
if not D:
return True
if len(D) != len(A) - 1:
return False
d = min(D)
vis = [False] * len(D)
for e in D:
if e % d:
return False
tmp = e // d - 1
if tmp < 0 or tmp >= len(D) or vis[tmp]:
return False
else:
vis[tmp] = True
return True
return [check(l, r) for l, r in zip(L, R)]
但是悲伤的是: 虽然赢了时间复杂度, 但是没有赢下运行时间, 仅仅击败了12%.
原因估计是数据长度太短了(最多500), 时间复杂度上的优势不能体现出来, 而Python自带的sort速度比较快.
如果用其他编程语言, 比如cpp, 我估计效果会非常好.
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
7683 | 10069 | 76.3% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|