原文链接: https://leetcode-cn.com/problems/path-with-minimum-effort
英文原文
You are a hiker preparing for an upcoming hike. You are given heights
, a 2D array of size rows x columns
, where heights[row][col]
represents the height of cell (row, col)
. You are situated in the top-left cell, (0, 0)
, and you hope to travel to the bottom-right cell, (rows-1, columns-1)
(i.e., 0-indexed). You can move up, down, left, or right, and you wish to find a route that requires the minimum effort.
A route's effort is the maximum absolute difference in heights between two consecutive cells of the route.
Return the minimum effort required to travel from the top-left cell to the bottom-right cell.
Example 1:
Input: heights = [[1,2,2],[3,8,2],[5,3,5]] Output: 2 Explanation: The route of [1,3,5,3,5] has a maximum absolute difference of 2 in consecutive cells. This is better than the route of [1,2,2,2,5], where the maximum absolute difference is 3.
Example 2:
Input: heights = [[1,2,3],[3,8,4],[5,3,5]] Output: 1 Explanation: The route of [1,2,3,4,5] has a maximum absolute difference of 1 in consecutive cells, which is better than route [1,3,5,3,5].
Example 3:
Input: heights = [[1,2,1,1,1],[1,2,1,2,1],[1,2,1,2,1],[1,2,1,2,1],[1,1,1,2,1]] Output: 0 Explanation: This route does not require any effort.
Constraints:
rows == heights.length
columns == heights[i].length
1 <= rows, columns <= 100
1 <= heights[i][j] <= 106
中文题目
你准备参加一场远足活动。给你一个二维 rows x columns
的地图 heights
,其中 heights[row][col]
表示格子 (row, col)
的高度。一开始你在最左上角的格子 (0, 0)
,且你希望去最右下角的格子 (rows-1, columns-1)
(注意下标从 0 开始编号)。你每次可以往 上,下,左,右 四个方向之一移动,你想要找到耗费 体力 最小的一条路径。
一条路径耗费的 体力值 是路径上相邻格子之间 高度差绝对值 的 最大值 决定的。
请你返回从左上角走到右下角的最小 体力消耗值 。
示例 1:
输入:heights = [[1,2,2],[3,8,2],[5,3,5]] 输出:2 解释:路径 [1,3,5,3,5] 连续格子的差值绝对值最大为 2 。 这条路径比路径 [1,2,2,2,5] 更优,因为另一条路径差值最大值为 3 。
示例 2:
输入:heights = [[1,2,3],[3,8,4],[5,3,5]] 输出:1 解释:路径 [1,2,3,4,5] 的相邻格子差值绝对值最大为 1 ,比路径 [1,3,5,3,5] 更优。
示例 3:
输入:heights = [[1,2,1,1,1],[1,2,1,2,1],[1,2,1,2,1],[1,2,1,2,1],[1,1,1,2,1]] 输出:0 解释:上图所示路径不需要消耗任何体力。
提示:
rows == heights.length
columns == heights[i].length
1 <= rows, columns <= 100
1 <= heights[i][j] <= 106
通过代码
高赞题解
前言
本题实际上即为:
将每个格子抽象成图中的一个点;
将每两个相邻的格子之间连接一条边,长度为这两个格子本身权值的差的绝对值;
需要找到一条从左上角到右下角的「最短路径」,其中路径的长度定义为路径上所有边的权值的最大值。
这也是一道比较经典的题目了,常用的方法有如下几种:
「二分答案」:我们可以对最短路径的长度进行二分。当我们二分枚举到的长度为 $x$ 时,我们只保留所有长度 $\leq x$ 的边。随后从左上角开始进行搜索(深度优先搜索、广度优先搜索)均可,只需要判断是否能够到达右下角即可。
如果能够到达右下角,我们就可以减小 $x$ 的值,反之增大 $x$ 的值。
「并查集」:我们可以将所有边按照长度进行排序并依次添加进并查集,直到左上角和右下角连通为止。
「最短路」:我们可以使用任一单源最短路径的算法(例如 Dijkstra 算法),只需要在维护当前路径长度时,将其修改为题目中的定义即可。
方法一:二分答案
class Solution {
private:
static constexpr int dirs[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
public:
int minimumEffortPath(vector<vector<int>>& heights) {
int m = heights.size();
int n = heights[0].size();
int left = 0, right = 999999, ans = 0;
while (left <= right) {
int mid = (left + right) / 2;
queue<pair<int, int>> q;
q.emplace(0, 0);
vector<int> seen(m * n);
seen[0] = 1;
while (!q.empty()) {
auto [x, y] = q.front();
q.pop();
for (int i = 0; i < 4; ++i) {
int nx = x + dirs[i][0];
int ny = y + dirs[i][1];
if (nx >= 0 && nx < m && ny >= 0 && ny < n && !seen[nx * n + ny] && abs(heights[x][y] - heights[nx][ny]) <= mid) {
q.emplace(nx, ny);
seen[nx * n + ny] = 1;
}
}
}
if (seen[m * n - 1]) {
ans = mid;
right = mid - 1;
}
else {
left = mid + 1;
}
}
return ans;
}
};
方法二:并查集
class UF {
public:
vector<int> fa;
vector<int> sz;
int n;
int comp_cnt;
public:
UF(int _n): n(_n), comp_cnt(_n), fa(_n), sz(_n, 1) {
iota(fa.begin(), fa.end(), 0);
}
int findset(int x) {
return fa[x] == x ? x : fa[x] = findset(fa[x]);
}
void unite(int x, int y) {
x = findset(x);
y = findset(y);
if (x == y) {
return;
}
if (sz[x] < sz[y]) {
swap(x, y);
}
fa[y] = x;
sz[x] += sz[y];
--comp_cnt;
}
bool connected(int x, int y) {
x = findset(x);
y = findset(y);
return x == y;
}
};
struct Edge {
int x, y, z;
Edge(int _x, int _y, int _z): x(_x), y(_y), z(_z) {}
bool operator< (const Edge& that) const {
return z < that.z;
}
};
class Solution {
public:
int minimumEffortPath(vector<vector<int>>& heights) {
int m = heights.size();
int n = heights[0].size();
vector<Edge> edges;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
int id = i * n + j;
if (i > 0) {
edges.emplace_back(id - n, id, abs(heights[i][j] - heights[i - 1][j]));
}
if (j > 0) {
edges.emplace_back(id - 1, id, abs(heights[i][j] - heights[i][j - 1]));
}
}
}
sort(edges.begin(), edges.end());
UF uf(m * n);
for (const auto& edge: edges) {
uf.unite(edge.x, edge.y);
if (uf.connected(0, m * n - 1)) {
return edge.z;
}
}
return 0;
}
};
方法三:最短路
struct Dist {
int x, y, z;
Dist(int _x, int _y, int _z): x(_x), y(_y), z(_z) {}
bool operator< (const Dist& that) const {
return z > that.z;
}
};
class Solution {
private:
static constexpr int dirs[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
public:
int minimumEffortPath(vector<vector<int>>& heights) {
int m = heights.size();
int n = heights[0].size();
priority_queue<Dist> q;
vector<int> seen(m * n);
vector<int> dist(m * n, INT_MAX);
q.emplace(0, 0, 0);
dist[0] = 0;
while (!q.empty()) {
auto [x, y, z] = q.top();
q.pop();
if (seen[x * n + y]) {
continue;
}
seen[x * n + y] = 1;
dist[x * n + y] = z;
for (int i = 0; i < 4; ++i) {
int nx = x + dirs[i][0];
int ny = y + dirs[i][1];
if (nx >= 0 && nx < m && ny >= 0 && ny < n && !seen[nx * n + ny]) {
q.emplace(nx, ny, max(z, abs(heights[x][y] - heights[nx][ny])));
}
}
}
return dist[m * n - 1];
}
};
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
26710 | 54067 | 49.4% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|