原文链接: https://leetcode-cn.com/problems/maximum-earnings-from-taxi
英文原文
There are n points on a road you are driving your taxi on. The n points on the road are labeled from 1 to n in the direction you are going, and you want to drive from point 1 to point n to make money by picking up passengers. You cannot change the direction of the taxi.
The passengers are represented by a 0-indexed 2D integer array rides, where rides[i] = [starti, endi, tipi] denotes the ith passenger requesting a ride from point starti to point endi who is willing to give a tipi dollar tip.
For each passenger i you pick up, you earn endi - starti + tipi dollars. You may only drive at most one passenger at a time.
Given n and rides, return the maximum number of dollars you can earn by picking up the passengers optimally.
Note: You may drop off a passenger and pick up a different passenger at the same point.
Example 1:
Input: n = 5, rides = [[2,5,4],[1,5,1]] Output: 7 Explanation: We can pick up passenger 0 to earn 5 - 2 + 4 = 7 dollars.
Example 2:
Input: n = 20, rides = [[1,6,1],[3,10,2],[10,12,3],[11,12,2],[12,15,2],[13,18,1]] Output: 20 Explanation: We will pick up the following passengers: - Drive passenger 1 from point 3 to point 10 for a profit of 10 - 3 + 2 = 9 dollars. - Drive passenger 2 from point 10 to point 12 for a profit of 12 - 10 + 3 = 5 dollars. - Drive passenger 5 from point 13 to point 18 for a profit of 18 - 13 + 1 = 6 dollars. We earn 9 + 5 + 6 = 20 dollars in total.
Constraints:
1 <= n <= 1051 <= rides.length <= 3 * 104rides[i].length == 31 <= starti < endi <= n1 <= tipi <= 105
中文题目
你驾驶出租车行驶在一条有 n 个地点的路上。这 n 个地点从近到远编号为 1 到 n ,你想要从 1 开到 n ,通过接乘客订单盈利。你只能沿着编号递增的方向前进,不能改变方向。
乘客信息用一个下标从 0 开始的二维数组 rides 表示,其中 rides[i] = [starti, endi, tipi] 表示第 i 位乘客需要从地点 starti 前往 endi ,愿意支付 tipi 元的小费。
每一位 你选择接单的乘客 i ,你可以 盈利 endi - starti + tipi 元。你同时 最多 只能接一个订单。
给你 n 和 rides ,请你返回在最优接单方案下,你能盈利 最多 多少元。
注意:你可以在一个地点放下一位乘客,并在同一个地点接上另一位乘客。
示例 1:
输入:n = 5, rides = [[2,5,4],[1,5,1]] 输出:7 解释:我们可以接乘客 0 的订单,获得 5 - 2 + 4 = 7 元。
示例 2:
输入:n = 20, rides = [[1,6,1],[3,10,2],[10,12,3],[11,12,2],[12,15,2],[13,18,1]] 输出:20 解释:我们可以接以下乘客的订单: - 将乘客 1 从地点 3 送往地点 10 ,获得 10 - 3 + 2 = 9 元。 - 将乘客 2 从地点 10 送往地点 12 ,获得 12 - 10 + 3 = 5 元。 - 将乘客 5 从地点 13 送往地点 18 ,获得 18 - 13 + 1 = 6 元。 我们总共获得 9 + 5 + 6 = 20 元。
提示:
1 <= n <= 1051 <= rides.length <= 3 * 104rides[i].length == 31 <= starti < endi <= n1 <= tipi <= 105
通过代码
高赞题解
定义 $f[i]$ 表示行驶到 $i$ 时的最大盈利。考虑状态转移,一方面,我们可以不接终点为 $i$ 的乘客,这样有 $f[i]=f[i-1]$;另一方面,我们可以接所有终点为 $i$ 的乘客中收益最大的,这样有 $f[i] = \max (f[start]+i-start+tip)$,二者取最大值。
最终答案为 $f[n]$。
相似题目:
func maxTaxiEarnings(n int, rides [][]int) int64 {
f := make([]int, n+1)
groups := make([][][2]int, n+1)
for _, r := range rides {
start, end, tip := r[0], r[1], r[2]
groups[end] = append(groups[end], [2]int{start, tip}) // 按终点位置分组
}
for end := 1; end <= n; end++ { // 从前往后枚举终点
f[end] = f[end-1]
for _, r := range groups[end] {
start, tip := r[0], r[1]
f[end] = max(f[end], f[start]+end-start+tip) // 接所有终点为 end 的乘客中收益最大的
}
}
return int64(f[n])
}
func max(a, b int) int { if b > a { return b }; return a }
统计信息
| 通过次数 | 提交次数 | AC比率 |
|---|---|---|
| 2518 | 5953 | 42.3% |
提交历史
| 提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
|---|