英文原文
You want to water n
plants in your garden with a watering can. The plants are arranged in a row and are labeled from 0
to n - 1
from left to right where the ith
plant is located at x = i
. There is a river at x = -1
that you can refill your watering can at.
Each plant needs a specific amount of water. You will water the plants in the following way:
- Water the plants in order from left to right.
- After watering the current plant, if you do not have enough water to completely water the next plant, return to the river to fully refill the watering can.
- You cannot refill the watering can early.
You are initially at the river (i.e., x = -1
). It takes one step to move one unit on the x-axis.
Given a 0-indexed integer array plants
of n
integers, where plants[i]
is the amount of water the ith
plant needs, and an integer capacity
representing the watering can capacity, return the number of steps needed to water all the plants.
Example 1:
Input: plants = [2,2,3,3], capacity = 5 Output: 14 Explanation: Start at the river with a full watering can: - Walk to plant 0 (1 step) and water it. Watering can has 3 units of water. - Walk to plant 1 (1 step) and water it. Watering can has 1 unit of water. - Since you cannot completely water plant 2, walk back to the river to refill (2 steps). - Walk to plant 2 (3 steps) and water it. Watering can has 2 units of water. - Since you cannot completely water plant 3, walk back to the river to refill (3 steps). - Walk to plant 3 (4 steps) and water it. Steps needed = 1 + 1 + 2 + 3 + 3 + 4 = 14.
Example 2:
Input: plants = [1,1,1,4,2,3], capacity = 4 Output: 30 Explanation: Start at the river with a full watering can: - Water plants 0, 1, and 2 (3 steps). Return to river (3 steps). - Water plant 3 (4 steps). Return to river (4 steps). - Water plant 4 (5 steps). Return to river (5 steps). - Water plant 5 (6 steps). Steps needed = 3 + 3 + 4 + 4 + 5 + 5 + 6 = 30.
Example 3:
Input: plants = [7,7,7,7,7,7,7], capacity = 8 Output: 49 Explanation: You have to refill before watering each plant. Steps needed = 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 6 + 6 + 7 = 49.
Constraints:
n == plants.length
1 <= n <= 1000
1 <= plants[i] <= 106
max(plants[i]) <= capacity <= 109
中文题目
你打算用一个水罐给花园里的 n
株植物浇水。植物排成一行,从左到右进行标记,编号从 0
到 n - 1
。其中,第 i
株植物的位置是 x = i
。x = -1
处有一条河,你可以在那里重新灌满你的水罐。
每一株植物都需要浇特定量的水。你将会按下面描述的方式完成浇水:
- 按从左到右的顺序给植物浇水。
- 在给当前植物浇完水之后,如果你没有足够的水 完全 浇灌下一株植物,那么你就需要返回河边重新装满水罐。
- 你 不能 提前重新灌满水罐。
最初,你在河边(也就是,x = -1
),在 x 轴上每移动 一个单位 都需要 一步 。
给你一个下标从 0 开始的整数数组 plants
,数组由 n
个整数组成。其中,plants[i]
为第 i
株植物需要的水量。另有一个整数 capacity
表示水罐的容量,返回浇灌所有植物需要的 步数 。
示例 1:
输入:plants = [2,2,3,3], capacity = 5 输出:14 解释:从河边开始,此时水罐是装满的: - 走到植物 0 (1 步) ,浇水。水罐中还有 3 单位的水。 - 走到植物 1 (1 步) ,浇水。水罐中还有 1 单位的水。 - 由于不能完全浇灌植物 2 ,回到河边取水 (2 步)。 - 走到植物 2 (3 步) ,浇水。水罐中还有 2 单位的水。 - 由于不能完全浇灌植物 3 ,回到河边取水 (3 步)。 - 走到植物 3 (4 步) ,浇水。 需要的步数是 = 1 + 1 + 2 + 3 + 3 + 4 = 14 。
示例 2:
输入:plants = [1,1,1,4,2,3], capacity = 4 输出:30 解释:从河边开始,此时水罐是装满的: - 走到植物 0,1,2 (3 步) ,浇水。回到河边取水 (3 步)。 - 走到植物 3 (4 步) ,浇水。回到河边取水 (4 步)。 - 走到植物 4 (5 步) ,浇水。回到河边取水 (5 步)。 - 走到植物 5 (6 步) ,浇水。 需要的步数是 = 3 + 3 + 4 + 4 + 5 + 5 + 6 = 30 。
示例 3:
输入:plants = [7,7,7,7,7,7,7], capacity = 8 输出:49 解释:每次浇水都需要重新灌满水罐。 需要的步数是 = 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 6 + 6 + 7 = 49 。
提示:
n == plants.length
1 <= n <= 1000
1 <= plants[i] <= 106
max(plants[i]) <= capacity <= 109
通过代码
高赞题解
由于每株植物都需要浇水,所以答案至少为植物的个数。我们只需要额外计算出在哪些位置往返即可,在位置 $i$ 处往返需要走 $2i$ 步,额外加上这些步数即为答案。
func wateringPlants(plants []int, capacity int) int {
ans := len(plants)
water := capacity // 初始水量
for i, need := range plants {
if water < need {
ans += 2 * i // 往返
water = capacity // 重置水量
}
water -= need
}
return ans
}
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
5180 | 6714 | 77.2% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|