英文原文
Given an integer n
, return the least number of perfect square numbers that sum to n
.
A perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 1
, 4
, 9
, and 16
are perfect squares while 3
and 11
are not.
Example 1:
Input: n = 12 Output: 3 Explanation: 12 = 4 + 4 + 4.
Example 2:
Input: n = 13 Output: 2 Explanation: 13 = 4 + 9.
Constraints:
1 <= n <= 104
中文题目
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...
)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
给你一个整数 n
,返回和为 n
的完全平方数的 最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1
、4
、9
和 16
都是完全平方数,而 3
和 11
不是。
示例 1:
输入:n =12
输出:3 解释:12 = 4 + 4 + 4
示例 2:
输入:n =13
输出:2 解释:13 = 4 + 9
提示:
1 <= n <= 104
通过代码
高赞题解
解题方案
思路:
- 标签:动态规划
- 首先初始化长度为
n+1
的数组dp
,每个位置都为0
- 如果
n
为0
,则结果为0
- 对数组进行遍历,下标为
i
,每次都将当前数字先更新为最大的结果,即dp[i]=i
,比如i=4
,最坏结果为4=1+1+1+1
即为4
个数字 - 动态转移方程为:
dp[i] = MIN(dp[i], dp[i - j * j] + 1)
,i
表示当前数字,j*j
表示平方数 - 时间复杂度:$O(n*sqrt(n))$,sqrt 为平方根
class Solution {
public int numSquares(int n) {
int[] dp = new int[n + 1]; // 默认初始化值都为0
for (int i = 1; i <= n; i++) {
dp[i] = i; // 最坏的情况就是每次+1
for (int j = 1; i - j * j >= 0; j++) {
dp[i] = Math.min(dp[i], dp[i - j * j] + 1); // 动态转移方程
}
}
return dp[n];
}
}
/**
* @param {number} n
* @return {number}
*/
var numSquares = function(n) {
const dp = [...Array(n+1)].map(_=>0); // 数组长度为n+1,值均为0
for (let i = 1; i <= n; i++) {
dp[i] = i; // 最坏的情况就是每次+1
for (let j = 1; i - j * j >= 0; j++) {
dp[i] = Math.min(dp[i], dp[i - j * j] + 1); // 动态转移方程
}
}
return dp[n];
};
画解:
<,,,,,,,,,,,,>
想看大鹏画解更多高频面试题,欢迎阅读大鹏的 LeetBook:《画解剑指 Offer 》,O(∩_∩)O
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
218369 | 344028 | 63.5% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|
相似题目
题目 | 难度 |
---|---|
计数质数 | 中等 |
丑数 II | 中等 |