英文原文
Given two integers dividend
and divisor
, divide two integers without using multiplication, division, and mod operator.
The integer division should truncate toward zero, which means losing its fractional part. For example, 8.345
would be truncated to 8
, and -2.7335
would be truncated to -2
.
Return the quotient after dividing dividend
by divisor
.
Note: Assume we are dealing with an environment that could only store integers within the 32-bit signed integer range: [−231, 231 − 1]
. For this problem, if the quotient is strictly greater than 231 - 1
, then return 231 - 1
, and if the quotient is strictly less than -231
, then return -231
.
Example 1:
Input: dividend = 10, divisor = 3 Output: 3 Explanation: 10/3 = 3.33333.. which is truncated to 3.
Example 2:
Input: dividend = 7, divisor = -3 Output: -2 Explanation: 7/-3 = -2.33333.. which is truncated to -2.
Example 3:
Input: dividend = 0, divisor = 1 Output: 0
Example 4:
Input: dividend = 1, divisor = 1 Output: 1
Constraints:
-231 <= dividend, divisor <= 231 - 1
divisor != 0
中文题目
给定两个整数,被除数 dividend
和除数 divisor
。将两数相除,要求不使用乘法、除法和 mod 运算符。
返回被除数 dividend
除以除数 divisor
得到的商。
整数除法的结果应当截去(truncate
)其小数部分,例如:truncate(8.345) = 8
以及 truncate(-2.7335) = -2
示例 1:
输入: dividend = 10, divisor = 3 输出: 3 解释: 10/3 = truncate(3.33333..) = truncate(3) = 3
示例 2:
输入: dividend = 7, divisor = -3 输出: -2 解释: 7/-3 = truncate(-2.33333..) = -2
提示:
- 被除数和除数均为 32 位有符号整数。
- 除数不为 0。
- 假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−231, 231 − 1]。本题中,如果除法结果溢出,则返回 231 − 1。
通过代码
高赞题解
越界问题只要对除数是1和-1单独讨论就完事了啊
关于如何提高效率快速逼近结果
举个例子:11 除以 3 。
首先11比3大,结果至少是1, 然后我让3翻倍,就是6,发现11比3翻倍后还要大,那么结果就至少是2了,那我让这个6再翻倍,得12,11不比12大,吓死我了,差点让就让刚才的最小解2也翻倍得到4了。但是我知道最终结果肯定在2和4之间。也就是说2再加上某个数,这个数是多少呢?我让11减去刚才最后一次的结果6,剩下5,我们计算5是3的几倍,也就是除法,看,递归出现了。说得很乱,不严谨,大家看个大概,然后自己在纸上画一画,或者直接看我代码就好啦!
class Solution {
public:
int divide(int dividend, int divisor) {
if(dividend == 0) return 0;
if(divisor == 1) return dividend;
if(divisor == -1){
if(dividend>INT_MIN) return -dividend;// 只要不是最小的那个整数,都是直接返回相反数就好啦
return INT_MAX;// 是最小的那个,那就返回最大的整数啦
}
long a = dividend;
long b = divisor;
int sign = 1;
if((a>0&&b<0) || (a<0&&b>0)){
sign = -1;
}
a = a>0?a:-a;
b = b>0?b:-b;
long res = div(a,b);
if(sign>0)return res>INT_MAX?INT_MAX:res;
return -res;
}
int div(long a, long b){ // 似乎精髓和难点就在于下面这几句
if(a<b) return 0;
long count = 1;
long tb = b; // 在后面的代码中不更新b
while((tb+tb)<=a){
count = count + count; // 最小解翻倍
tb = tb+tb; // 当前测试的值也翻倍
}
return count + div(a-tb,b);
}
};
(有收获的话求个赞..)
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
136600 | 620995 | 22.0% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|