原文链接: https://leetcode-cn.com/problems/increasing-triplet-subsequence
英文原文
Given an integer array nums, return true if there exists a triple of indices (i, j, k) such that i < j < k and nums[i] < nums[j] < nums[k]. If no such indices exists, return false.
Example 1:
Input: nums = [1,2,3,4,5] Output: true Explanation: Any triplet where i < j < k is valid.
Example 2:
Input: nums = [5,4,3,2,1] Output: false Explanation: No triplet exists.
Example 3:
Input: nums = [2,1,5,0,4,6] Output: true Explanation: The triplet (3, 4, 5) is valid because nums[3] == 0 < nums[4] == 4 < nums[5] == 6.
Constraints:
1 <= nums.length <= 5 * 105-231 <= nums[i] <= 231 - 1
Follow up: Could you implement a solution that runs in
O(n) time complexity and O(1) space complexity?中文题目
给你一个整数数组 nums ,判断这个数组中是否存在长度为 3 的递增子序列。
如果存在这样的三元组下标 (i, j, k) 且满足 i < j < k ,使得 nums[i] < nums[j] < nums[k] ,返回 true ;否则,返回 false 。
示例 1:
输入:nums = [1,2,3,4,5] 输出:true 解释:任何 i < j < k 的三元组都满足题意
示例 2:
输入:nums = [5,4,3,2,1] 输出:false 解释:不存在满足题意的三元组
示例 3:
输入:nums = [2,1,5,0,4,6] 输出:true 解释:三元组 (3, 4, 5) 满足题意,因为 nums[3] == 0 < nums[4] == 4 < nums[5] == 6
提示:
1 <= nums.length <= 105-231 <= nums[i] <= 231 - 1
进阶:你能实现时间复杂度为 O(n) ,空间复杂度为 O(1) 的解决方案吗?
通过代码
高赞题解
递增的三元子序列
LeetCode 第 334 题
难度:
中等tags:
递增子序列查找巧妙的方法!
题目描述
给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列。
数学表达式如下:
如果存在这样的 i, j, k, 且满足 0 ≤ i < j < k ≤ n-1,使得 arr[i] < arr[j] < arr[k] ,返回 true ; 否则返回 false 。
说明: 要求算法的时间复杂度为 O(n),空间复杂度为 O(1) 。
示例 1:
输入: [1,2,3,4,5]
输出: true
示例 2:
输入: [5,4,3,2,1]
输出: false
思路
本题的思路非常的巧妙!
首先,新建两个变量 small 和 mid ,分别用来保存题目要我们求的长度为 3 的递增子序列的最小值和中间值。
接着,我们遍历数组,每遇到一个数字,我们将它和 small 和 mid 相比,若小于等于 small ,则替换 small;否则,若小于等于 mid,则替换 mid;否则,若大于 mid,则说明我们找到了长度为 3 的递增数组!
上面的求解过程中有个问题:当已经找到了长度为 2 的递增序列,这时又来了一个比 small 还小的数字,为什么可以直接替换 small 呢,这样 small 和 mid 在原数组中并不是按照索引递增的关系呀?
Trick 就在这里了!假如当前的 small 和 mid 为 [3, 5],这时又来了个 1。假如我们不将 small 替换为 1,那么,当下一个数字是 2,后面再接上一个 3 的时候,我们就没有办法发现这个 [1,2,3] 的递增数组了!也就是说,我们替换最小值,是为了后续能够更好地更新中间值!
另外,即使我们更新了 small ,这个 small 在 mid 后面,没有严格遵守递增顺序,但它隐含着的真相是,有一个比 small 大比 mid 小的前·最小值出现在 mid 之前。因此,当后续出现比 mid 大的值的时候,我们一样可以通过当前 small 和 mid 推断的确存在着长度为 3 的递增序列。 所以,这样的替换并不会干扰我们后续的计算!
AC 代码:
class Solution {
public:
bool increasingTriplet(vector<int>& nums) {
int len = nums.size();
if (len < 3) return false;
int small = INT_MAX, mid = INT_MAX;
for (auto num : nums) {
if (num <= small) {
small = num;
} else if (num <= mid) {
mid = num;
}
else if (num > mid) {
return true;
}
}
return false;
}
};
统计信息
| 通过次数 | 提交次数 | AC比率 |
|---|---|---|
| 50371 | 122481 | 41.1% |
提交历史
| 提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
|---|
相似题目
| 题目 | 难度 |
|---|---|
| 最长递增子序列 | 中等 |