英文原文
You are given an integer array nums
of length n
.
Assume arrk
to be an array obtained by rotating nums
by k
positions clock-wise. We define the rotation function F
on nums
as follow:
F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1].
Return the maximum value of F(0), F(1), ..., F(n-1)
.
The test cases are generated so that the answer fits in a 32-bit integer.
Example 1:
Input: nums = [4,3,2,6] Output: 26 Explanation: F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
Example 2:
Input: nums = [100] Output: 0
Constraints:
n == nums.length
1 <= n <= 105
-100 <= nums[i] <= 100
中文题目
给定一个长度为 n 的整数数组 A
。
假设 Bk
是数组 A
顺时针旋转 k 个位置后的数组,我们定义 A
的“旋转函数” F
为:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
。
计算F(0), F(1), ..., F(n-1)
中的最大值。
注意:
可以认为 n 的值小于 105。
示例:
A = [4, 3, 2, 6] F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 所以 F(0), F(1), F(2), F(3) 中的最大值是 F(3) = 26 。
通过代码
高赞题解
解题思路
推导过程:
(1)F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-2) * Bk[n-2] + (n-1) * Bk[n-1]
(2)F(k+1) = 0 * Bk[n-1] + 1 * Bk[0] + 2 * Bk[2] + ... + (n-1) * Bk[n-2]
(2)-
(1)得:F(k+1) - F(k) = (Bk[0] + Bk[1] + ... + Bk[n-2]) - (n-1)*Bk[n-1]
可得:F(k+1) - F(k) = (Bk[0] + Bk[1] + ... + Bk[n-2] + Bk[n-1]) - n*Bk[n-1]
令S=Sum{Bk}
有:F(k+1) = F(k) + S - n * Bk[n-1]
代码
class Solution {
public:
int maxRotateFunction(vector<int>& A) {
long N = A.size();
long S = 0;
long t = 0;
for (int i = 0; i < N; ++i) {
S += A[i];
t += i * A[i];
}
long res = t;
for (int i = N - 1; i >= 0; --i) {
// F(k+1) = F(k) + S - n * Bk[n-1]
t += S - N * (long)A[i];
res = max(res, t);
}
return res;
}
};
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
9936 | 22819 | 43.5% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|