英文原文
A robot is located at the top-left corner of a m x n
grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Example 1:
Input: m = 3, n = 7 Output: 28
Example 2:
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Down -> Down 2. Down -> Down -> Right 3. Down -> Right -> Down
Example 3:
Input: m = 7, n = 3 Output: 28
Example 4:
Input: m = 3, n = 3 Output: 6
Constraints:
1 <= m, n <= 100
- It's guaranteed that the answer will be less than or equal to
2 * 109
.
中文题目
一个机器人位于一个 m x n
网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7 输出:28
示例 2:
输入:m = 3, n = 2 输出:3 解释: 从左上角开始,总共有 3 条路径可以到达右下角。 1. 向右 -> 向下 -> 向下 2. 向下 -> 向下 -> 向右 3. 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3 输出:28
示例 4:
输入:m = 3, n = 3 输出:6
提示:
1 <= m, n <= 100
- 题目数据保证答案小于等于
2 * 109
通过代码
高赞题解
思路
思路一:排列组合
因为机器到底右下角,向下几步,向右几步都是固定的,
比如,m=3, n=2
,我们只要向下 1 步,向右 2 步就一定能到达终点。
所以有 $C_{m+n-2}^{m-1}$
def uniquePaths(self, m: int, n: int) -> int:
return int(math.factorial(m+n-2)/math.factorial(m-1)/math.factorial(n-1))
思路二:动态规划
我们令 dp[i][j]
是到达 i, j
最多路径
动态方程:dp[i][j] = dp[i-1][j] + dp[i][j-1]
注意,对于第一行 dp[0][j]
,或者第一列 dp[i][0]
,由于都是在边界,所以只能为 1
时间复杂度:$O(m*n)$
空间复杂度:$O(m * n)$
优化:因为我们每次只需要 dp[i-1][j],dp[i][j-1]
所以我们只要记录这两个数,直接看代码吧!
代码
思路二:
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
dp = [[1]*n] + [[1]+[0] * (n-1) for _ in range(m-1)]
#print(dp)
for i in range(1, m):
for j in range(1, n):
dp[i][j] = dp[i-1][j] + dp[i][j-1]
return dp[-1][-1]
class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
for (int i = 0; i < n; i++) dp[0][i] = 1;
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
}
优化1:空间复杂度 $O(2n)$
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
pre = [1] * n
cur = [1] * n
for i in range(1, m):
for j in range(1, n):
cur[j] = pre[j] + cur[j-1]
pre = cur[:]
return pre[-1]
class Solution {
public int uniquePaths(int m, int n) {
int[] pre = new int[n];
int[] cur = new int[n];
Arrays.fill(pre, 1);
Arrays.fill(cur,1);
for (int i = 1; i < m;i++){
for (int j = 1; j < n; j++){
cur[j] = cur[j-1] + pre[j];
}
pre = cur.clone();
}
return pre[n-1];
}
}
优化2:空间复杂度 $O(n)$
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
cur = [1] * n
for i in range(1, m):
for j in range(1, n):
cur[j] += cur[j-1]
return cur[-1]
class Solution {
public int uniquePaths(int m, int n) {
int[] cur = new int[n];
Arrays.fill(cur,1);
for (int i = 1; i < m;i++){
for (int j = 1; j < n; j++){
cur[j] += cur[j-1] ;
}
}
return cur[n-1];
}
}
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
339662 | 511300 | 66.4% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|
相似题目
题目 | 难度 |
---|---|
不同路径 II | 中等 |
最小路径和 | 中等 |
地下城游戏 | 困难 |