英文原文
Design your implementation of the linked list. You can choose to use a singly or doubly linked list.
A node in a singly linked list should have two attributes: val
and next
. val
is the value of the current node, and next
is a pointer/reference to the next node.
If you want to use the doubly linked list, you will need one more attribute prev
to indicate the previous node in the linked list. Assume all nodes in the linked list are 0-indexed.
Implement the MyLinkedList
class:
MyLinkedList()
Initializes theMyLinkedList
object.int get(int index)
Get the value of theindexth
node in the linked list. If the index is invalid, return-1
.void addAtHead(int val)
Add a node of valueval
before the first element of the linked list. After the insertion, the new node will be the first node of the linked list.void addAtTail(int val)
Append a node of valueval
as the last element of the linked list.void addAtIndex(int index, int val)
Add a node of valueval
before theindexth
node in the linked list. Ifindex
equals the length of the linked list, the node will be appended to the end of the linked list. Ifindex
is greater than the length, the node will not be inserted.void deleteAtIndex(int index)
Delete theindexth
node in the linked list, if the index is valid.
Example 1:
Input ["MyLinkedList", "addAtHead", "addAtTail", "addAtIndex", "get", "deleteAtIndex", "get"] [[], [1], [3], [1, 2], [1], [1], [1]] Output [null, null, null, null, 2, null, 3] Explanation MyLinkedList myLinkedList = new MyLinkedList(); myLinkedList.addAtHead(1); myLinkedList.addAtTail(3); myLinkedList.addAtIndex(1, 2); // linked list becomes 1->2->3 myLinkedList.get(1); // return 2 myLinkedList.deleteAtIndex(1); // now the linked list is 1->3 myLinkedList.get(1); // return 3
Constraints:
0 <= index, val <= 1000
- Please do not use the built-in LinkedList library.
- At most
2000
calls will be made toget
,addAtHead
,addAtTail
,addAtIndex
anddeleteAtIndex
.
中文题目
设计链表的实现。您可以选择使用单链表或双链表。单链表中的节点应该具有两个属性:val
和 next
。val
是当前节点的值,next
是指向下一个节点的指针/引用。如果要使用双向链表,则还需要一个属性 prev
以指示链表中的上一个节点。假设链表中的所有节点都是 0-index 的。
在链表类中实现这些功能:
- get(index):获取链表中第
index
个节点的值。如果索引无效,则返回-1
。 - addAtHead(val):在链表的第一个元素之前添加一个值为
val
的节点。插入后,新节点将成为链表的第一个节点。 - addAtTail(val):将值为
val
的节点追加到链表的最后一个元素。 - addAtIndex(index,val):在链表中的第
index
个节点之前添加值为val
的节点。如果index
等于链表的长度,则该节点将附加到链表的末尾。如果index
大于链表长度,则不会插入节点。如果index
小于0,则在头部插入节点。 - deleteAtIndex(index):如果索引
index
有效,则删除链表中的第index
个节点。
示例:
MyLinkedList linkedList = new MyLinkedList(); linkedList.addAtHead(1); linkedList.addAtTail(3); linkedList.addAtIndex(1,2); //链表变为1-> 2-> 3 linkedList.get(1); //返回2 linkedList.deleteAtIndex(1); //现在链表是1-> 3 linkedList.get(1); //返回3
提示:
- 所有
val
值都在[1, 1000]
之内。 - 操作次数将在
[1, 1000]
之内。 - 请不要使用内置的 LinkedList 库。
通过代码
官方题解
面试要点
链表时一个包含零个或多个元素的数据结构。每个元素都包含一个值和到另一个元素的链接。根据链接数的不同,可以分为单链表,双链表和多重链表。
单链表是最简单的一种,它提供了在常数时间内的 addAtHead
操作和在线性时间内的 addAtTail
的操作。双链表是最常用的一种,因为它提供了在常数时间内的 addAtHead
和 addAtTail
操作,并且优化的插入和删除。
双链表在 Java 中的实现为 LinkedList,在 Python 中为 list。这些结构都比较常用,有两个要点:
- 哨兵节点:
哨兵节点在树和链表中被广泛用作伪头、伪尾等,通常不保存任何数据。
我们将使用伪头来简化我们简化插入和删除。在接下来的两种方法中应用此方法。
- 双链表的双向搜索:我们可以从头部或尾部进行搜索。
方法一:单链表
让我们从最简单的链表开始。
{:width=500}
class MyLinkedList:
def __init__(self):
self.size = 0
self.head = ListNode(0) # sentinel node as pseudo-head
class MyLinkedList {
int size;
ListNode head; // sentinel node as pseudo-head
public MyLinkedList() {
size = 0;
head = new ListNode(0);
}
}
哨兵节点被用作伪头始终存在,这样结构中永远不为空,它将至少包含一个伪头。MyLinkedList 中所有节点均包含:值 + 链接到下一个元素的指针。
class ListNode:
def __init__(self, x):
self.val = x
self.next = None
public class ListNode {
int val;
ListNode next;
ListNode(int x) { val = x; }
}
addAtIndex
,addAtHead
和 addAtTail
:
我们首先讨论 addAtIndex
,因为伪头的关系 addAtHead
和 addAtTail
可以使用 addAtIndex
来完成。
这个想法很简单:
- 找到要插入位置节点的前驱节点。如果要在头部插入,则它的前驱节点就是伪头。如果要在尾部插入节点,则前驱节点就是尾节点。
- 通过改变
next
来插入节点。
to_add.next = pred.next
pred.next = to_add
toAdd.next = pred.next;
pred.next = toAdd;
{:width=500}
{:width=500}
deleteAtIndex
:
和插入同样的道理。
- 找到要删除节点的前驱节点。
- 通过改变
next
来删除节点。
# delete pred.next
pred.next = pred.next.next
// delete pred.next
pred.next = pred.next.next;
{:width=500}
get
:
从伪头节点开始,向前走 index+1
步。
# index steps needed
# to move from sentinel node to wanted index
for _ in range(index + 1):
curr = curr.next
return curr.val
// index steps needed
// to move from sentinel node to wanted index
for(int i = 0; i < index + 1; ++i) curr = curr.next;
return curr.val;
{:width=500}
全部代码:
class ListNode:
def __init__(self, x):
self.val = x
self.next = None
class MyLinkedList:
def __init__(self):
self.size = 0
self.head = ListNode(0) # sentinel node as pseudo-head
def get(self, index: int) -> int:
"""
Get the value of the index-th node in the linked list. If the index is invalid, return -1.
"""
# if index is invalid
if index < 0 or index >= self.size:
return -1
curr = self.head
# index steps needed
# to move from sentinel node to wanted index
for _ in range(index + 1):
curr = curr.next
return curr.val
def addAtHead(self, val: int) -> None:
"""
Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list.
"""
self.addAtIndex(0, val)
def addAtTail(self, val: int) -> None:
"""
Append a node of value val to the last element of the linked list.
"""
self.addAtIndex(self.size, val)
def addAtIndex(self, index: int, val: int) -> None:
"""
Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted.
"""
# If index is greater than the length,
# the node will not be inserted.
if index > self.size:
return
# [so weird] If index is negative,
# the node will be inserted at the head of the list.
if index < 0:
index = 0
self.size += 1
# find predecessor of the node to be added
pred = self.head
for _ in range(index):
pred = pred.next
# node to be added
to_add = ListNode(val)
# insertion itself
to_add.next = pred.next
pred.next = to_add
def deleteAtIndex(self, index: int) -> None:
"""
Delete the index-th node in the linked list, if the index is valid.
"""
# if the index is invalid, do nothing
if index < 0 or index >= self.size:
return
self.size -= 1
# find predecessor of the node to be deleted
pred = self.head
for _ in range(index):
pred = pred.next
# delete pred.next
pred.next = pred.next.next
public class ListNode {
int val;
ListNode next;
ListNode(int x) { val = x; }
}
class MyLinkedList {
int size;
ListNode head; // sentinel node as pseudo-head
public MyLinkedList() {
size = 0;
head = new ListNode(0);
}
/** Get the value of the index-th node in the linked list. If the index is invalid, return -1. */
public int get(int index) {
// if index is invalid
if (index < 0 || index >= size) return -1;
ListNode curr = head;
// index steps needed
// to move from sentinel node to wanted index
for(int i = 0; i < index + 1; ++i) curr = curr.next;
return curr.val;
}
/** Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list. */
public void addAtHead(int val) {
addAtIndex(0, val);
}
/** Append a node of value val to the last element of the linked list. */
public void addAtTail(int val) {
addAtIndex(size, val);
}
/** Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted. */
public void addAtIndex(int index, int val) {
// If index is greater than the length,
// the node will not be inserted.
if (index > size) return;
// [so weird] If index is negative,
// the node will be inserted at the head of the list.
if (index < 0) index = 0;
++size;
// find predecessor of the node to be added
ListNode pred = head;
for(int i = 0; i < index; ++i) pred = pred.next;
// node to be added
ListNode toAdd = new ListNode(val);
// insertion itself
toAdd.next = pred.next;
pred.next = toAdd;
}
/** Delete the index-th node in the linked list, if the index is valid. */
public void deleteAtIndex(int index) {
// if the index is invalid, do nothing
if (index < 0 || index >= size) return;
size--;
// find predecessor of the node to be deleted
ListNode pred = head;
for(int i = 0; i < index; ++i) pred = pred.next;
// delete pred.next
pred.next = pred.next.next;
}
}
复杂度分析
- 时间复杂度:
addAtHead
: $\mathcal{O}(1)$addAtInder
,get
,deleteAtIndex
: $\mathcal{O}(k)$,其中 $k$ 指的是元素的索引。addAtTail
:$\mathcal{O}(N)$,其中 $N$ 指的是链表的元素个数。
- 空间复杂度:所有的操作都是 $O(1)$。
方法二:双链表
双链表比单链表快得多,测试用例花费的时间比单链表快了两倍。但是它更加复杂,它包含了 size
,记录链表元素个数,和伪头伪尾。
class MyLinkedList:
def __init__(self):
self.size = 0
# sentinel nodes as pseudo-head and pseudo-tail
self.head, self.tail = ListNode(0), ListNode(0)
self.head.next = self.tail
self.tail.prev = self.head
class MyLinkedList {
int size;
// sentinel nodes as pseudo-head and pseudo-tail
ListNode head, tail;
public MyLinkedList() {
size = 0;
head = new ListNode(0);
tail = new ListNode(0);
head.next = tail;
tail.prev = head;
}
}
伪头和伪尾总是存在,MyLinkedList 中所有节点都包含:值 + 指向前一个节点的指针 + 指向后一个节点的指针。
class ListNode:
def __init__(self, x):
self.val = x
self.next = None
self.prev = None
public class ListNode {
int val;
ListNode next;
ListNode prev;
ListNode(int x) { val = x; }
}
addAtIndex
,addAtHead
和 addAtTail
:
- 找到要插入节点的前驱节点和后继节点。如果要在头部插入节点,则它的前驱结点是伪头。如果要在尾部插入节点,则它的后继节点是伪尾。
- 通过改变前驱结点和后继节点的链接关系添加元素。
to_add.prev = pred
to_add.next = succ
pred.next = to_add
succ.prev = to_add
toAdd.prev = pred
toAdd.next = succ
pred.next = toAdd
succ.prev = toAdd
deleteAtIndex
:
和插入同样的道理。
- 找到要删除节点的前驱结点和后继节点。
- 通过改变前驱结点和后继节点的链接关系删除元素。
pred.next = succ
succ.prev = pred
pred.next = succ
succ.prev = pred
get
:
- 通过比较
index
和size - index
的大小判断从头开始较快还是从尾巴开始较快。 - 从较快的方向开始。
# choose the fastest way: to move from the head
# or to move from the tail
if index + 1 < self.size - index:
curr = self.head
for _ in range(index + 1):
curr = curr.next
else:
curr = self.tail
for _ in range(self.size - index):
curr = curr.prev
// choose the fastest way: to move from the head
// or to move from the tail
ListNode curr = head;
if (index + 1 < size - index)
for(int i = 0; i < index + 1; ++i) curr = curr.next;
else {
curr = tail;
for(int i = 0; i < size - index; ++i) curr = curr.prev;
}
全部代码:
class ListNode:
def __init__(self, x):
self.val = x
self.next, self.prev = None, None
class MyLinkedList:
def __init__(self):
self.size = 0
# sentinel nodes as pseudo-head and pseudo-tail
self.head, self.tail = ListNode(0), ListNode(0)
self.head.next = self.tail
self.tail.prev = self.head
def get(self, index: int) -> int:
"""
Get the value of the index-th node in the linked list. If the index is invalid, return -1.
"""
# if index is invalid
if index < 0 or index >= self.size:
return -1
# choose the fastest way: to move from the head
# or to move from the tail
if index + 1 < self.size - index:
curr = self.head
for _ in range(index + 1):
curr = curr.next
else:
curr = self.tail
for _ in range(self.size - index):
curr = curr.prev
return curr.val
def addAtHead(self, val: int) -> None:
"""
Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list.
"""
pred, succ = self.head, self.head.next
self.size += 1
to_add = ListNode(val)
to_add.prev = pred
to_add.next = succ
pred.next = to_add
succ.prev = to_add
def addAtTail(self, val: int) -> None:
"""
Append a node of value val to the last element of the linked list.
"""
succ, pred = self.tail, self.tail.prev
self.size += 1
to_add = ListNode(val)
to_add.prev = pred
to_add.next = succ
pred.next = to_add
succ.prev = to_add
def addAtIndex(self, index: int, val: int) -> None:
"""
Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted.
"""
# If index is greater than the length,
# the node will not be inserted.
if index > self.size:
return
# [so weird] If index is negative,
# the node will be inserted at the head of the list.
if index < 0:
index = 0
# find predecessor and successor of the node to be added
if index < self.size - index:
pred = self.head
for _ in range(index):
pred = pred.next
succ = pred.next
else:
succ = self.tail
for _ in range(self.size - index):
succ = succ.prev
pred = succ.prev
# insertion itself
self.size += 1
to_add = ListNode(val)
to_add.prev = pred
to_add.next = succ
pred.next = to_add
succ.prev = to_add
def deleteAtIndex(self, index: int) -> None:
"""
Delete the index-th node in the linked list, if the index is valid.
"""
# if the index is invalid, do nothing
if index < 0 or index >= self.size:
return
# find predecessor and successor of the node to be deleted
if index < self.size - index:
pred = self.head
for _ in range(index):
pred = pred.next
succ = pred.next.next
else:
succ = self.tail
for _ in range(self.size - index - 1):
succ = succ.prev
pred = succ.prev.prev
# delete pred.next
self.size -= 1
pred.next = succ
succ.prev = pred
public class ListNode {
int val;
ListNode next;
ListNode prev;
ListNode(int x) { val = x; }
}
class MyLinkedList {
int size;
// sentinel nodes as pseudo-head and pseudo-tail
ListNode head, tail;
public MyLinkedList() {
size = 0;
head = new ListNode(0);
tail = new ListNode(0);
head.next = tail;
tail.prev = head;
}
/** Get the value of the index-th node in the linked list. If the index is invalid, return -1. */
public int get(int index) {
// if index is invalid
if (index < 0 || index >= size) return -1;
// choose the fastest way: to move from the head
// or to move from the tail
ListNode curr = head;
if (index + 1 < size - index)
for(int i = 0; i < index + 1; ++i) curr = curr.next;
else {
curr = tail;
for(int i = 0; i < size - index; ++i) curr = curr.prev;
}
return curr.val;
}
/** Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list. */
public void addAtHead(int val) {
ListNode pred = head, succ = head.next;
++size;
ListNode toAdd = new ListNode(val);
toAdd.prev = pred;
toAdd.next = succ;
pred.next = toAdd;
succ.prev = toAdd;
}
/** Append a node of value val to the last element of the linked list. */
public void addAtTail(int val) {
ListNode succ = tail, pred = tail.prev;
++size;
ListNode toAdd = new ListNode(val);
toAdd.prev = pred;
toAdd.next = succ;
pred.next = toAdd;
succ.prev = toAdd;
}
/** Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted. */
public void addAtIndex(int index, int val) {
// If index is greater than the length,
// the node will not be inserted.
if (index > size) return;
// [so weird] If index is negative,
// the node will be inserted at the head of the list.
if (index < 0) index = 0;
// find predecessor and successor of the node to be added
ListNode pred, succ;
if (index < size - index) {
pred = head;
for(int i = 0; i < index; ++i) pred = pred.next;
succ = pred.next;
}
else {
succ = tail;
for (int i = 0; i < size - index; ++i) succ = succ.prev;
pred = succ.prev;
}
// insertion itself
++size;
ListNode toAdd = new ListNode(val);
toAdd.prev = pred;
toAdd.next = succ;
pred.next = toAdd;
succ.prev = toAdd;
}
/** Delete the index-th node in the linked list, if the index is valid. */
public void deleteAtIndex(int index) {
// if the index is invalid, do nothing
if (index < 0 || index >= size) return;
// find predecessor and successor of the node to be deleted
ListNode pred, succ;
if (index < size - index) {
pred = head;
for(int i = 0; i < index; ++i) pred = pred.next;
succ = pred.next.next;
}
else {
succ = tail;
for (int i = 0; i < size - index - 1; ++i) succ = succ.prev;
pred = succ.prev.prev;
}
// delete pred.next
--size;
pred.next = succ;
succ.prev = pred;
}
}
复杂度分析
- 时间复杂度:
addAtHead
,addAtTail
: $\mathcal{O}(1)$get
,addAtIndex
,delete
:$\mathcal{O}(\min(k, N - k))$,其中 $k$ 指的是元素的索引。
- 空间复杂度:所有的操作都是 $\mathcal{O}(1)$。
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
72610 | 223878 | 32.4% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|