英文原文
Alice has some number of cards and she wants to rearrange the cards into groups so that each group is of size groupSize
, and consists of groupSize
consecutive cards.
Given an integer array hand
where hand[i]
is the value written on the ith
card and an integer groupSize
, return true
if she can rearrange the cards, or false
otherwise.
Example 1:
Input: hand = [1,2,3,6,2,3,4,7,8], groupSize = 3 Output: true Explanation: Alice's hand can be rearranged as [1,2,3],[2,3,4],[6,7,8]
Example 2:
Input: hand = [1,2,3,4,5], groupSize = 4 Output: false Explanation: Alice's hand can not be rearranged into groups of 4.
Constraints:
1 <= hand.length <= 104
0 <= hand[i] <= 109
1 <= groupSize <= hand.length
Note: This question is the same as 1296: https://leetcode.com/problems/divide-array-in-sets-of-k-consecutive-numbers/
中文题目
爱丽丝有一手(hand
)由整数数组给定的牌。
现在她想把牌重新排列成组,使得每个组的大小都是 W
,且由 W
张连续的牌组成。
如果她可以完成分组就返回 true
,否则返回 false
。
注意:此题目与 1296 重复:https://leetcode-cn.com/problems/divide-array-in-sets-of-k-consecutive-numbers/
示例 1:
输入:hand = [1,2,3,6,2,3,4,7,8], W = 3
输出:true
解释:爱丽丝的手牌可以被重新排列为 [1,2,3],[2,3,4],[6,7,8]
。
示例 2:
输入:hand = [1,2,3,4,5], W = 4 输出:false 解释:爱丽丝的手牌无法被重新排列成几个大小为 4 的组。
提示:
1 <= hand.length <= 10000
0 <= hand[i] <= 10^9
1 <= W <= hand.length
通过代码
官方题解
方法一:暴力解法【通过】
思路
因为手中最小的牌也一定是某个分组中的起始牌,所以反复从手中最小的牌开始组建一个长度为 W
的组。
算法
使用 TreeMap
或 dict
记录每种牌的数量 {card: number of copies of card}
。
然后反复执行以下步骤:找到最小的一张牌(假设是 x
),然后试图将 x, x+1, x+2, ..., x+W-1
这些牌的计数减 1
。如果每次都能找到这样的组且最终手里无牌,那么分组成功,否则失败。
class Solution {
public boolean isNStraightHand(int[] hand, int W) {
TreeMap<Integer, Integer> count = new TreeMap();
for (int card: hand) {
if (!count.containsKey(card))
count.put(card, 1);
else
count.replace(card, count.get(card) + 1);
}
while (count.size() > 0) {
int first = count.firstKey();
for (int card = first; card < first + W; ++card) {
if (!count.containsKey(card)) return false;
int c = count.get(card);
if (c == 1) count.remove(card);
else count.replace(card, c - 1);
}
}
return true;
}
}
class Solution(object):
def isNStraightHand(self, hand, W):
count = collections.Counter(hand)
while count:
m = min(count)
for k in xrange(m, m+W):
v = count[k]
if not v: return False
if v == 1:
del count[k]
else:
count[k] = v - 1
return True
复杂度分析
时间复杂度:$O(N * (N/W))$,其中 $N$ 是
hand
的长度,$(N / W)$ 是min(count)
的复杂度。在 Java 中使用TreeMap
可以将 $(N / W)$ 降低到 $\log N$。空间复杂度:$O(N)$。
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
9213 | 17917 | 51.4% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|