英文原文
Given the head
of a linked list and a value x
, partition it such that all nodes less than x
come before nodes greater than or equal to x
.
You should preserve the original relative order of the nodes in each of the two partitions.
Example 1:
Input: head = [1,4,3,2,5,2], x = 3 Output: [1,2,2,4,3,5]
Example 2:
Input: head = [2,1], x = 2 Output: [1,2]
Constraints:
- The number of nodes in the list is in the range
[0, 200]
. -100 <= Node.val <= 100
-200 <= x <= 200
中文题目
给你一个链表的头节点 head
和一个特定值 x
,请你对链表进行分隔,使得所有 小于 x
的节点都出现在 大于或等于 x
的节点之前。
你应当 保留 两个分区中每个节点的初始相对位置。
示例 1:
输入:head = [1,4,3,2,5,2], x = 3 输出:[1,2,2,4,3,5]
示例 2:
输入:head = [2,1], x = 2 输出:[1,2]
提示:
- 链表中节点的数目在范围
[0, 200]
内 -100 <= Node.val <= 100
-200 <= x <= 200
通过代码
高赞题解
方法一:模拟
直观来说我们只需维护两个链表 $\textit{small}$ 和 $\textit{large}$ 即可,$\textit{small}$ 链表按顺序存储所有小于 $x$ 的节点,$\textit{large}$ 链表按顺序存储所有大于等于 $x$ 的节点。遍历完原链表后,我们只要将 $\textit{small}$ 链表尾节点指向 $\textit{large}$ 链表的头节点即能完成对链表的分隔。
为了实现上述思路,我们设 $\textit{smallHead}$ 和 $\textit{largeHead}$ 分别为两个链表的哑节点,即它们的 $\textit{next}$ 指针指向链表的头节点,这样做的目的是为了更方便地处理头节点为空的边界条件。同时设 $\textit{small}$ 和 $\textit{large}$ 节点指向当前链表的末尾节点。开始时 $\textit{smallHead}=\textit{small},\textit{largeHead}=\textit{large}$。随后,从前往后遍历链表,判断当前链表的节点值是否小于 $x$,如果小于就将 $\textit{small}$ 的 $\textit{next}$ 指针指向该节点,否则将 $\textit{large}$ 的 $\textit{next}$ 指针指向该节点。
遍历结束后,我们将 $\textit{large}$ 的 $\textit{next}$ 指针置空,这是因为当前节点复用的是原链表的节点,而其 $\textit{next}$ 指针可能指向一个小于 $x$ 的节点,我们需要切断这个引用。同时将 $\textit{small}$ 的 $\textit{next}$ 指针指向 $\textit{largeHead}$ 的 $\textit{next}$ 指针指向的节点,即真正意义上的 $\textit{large}$ 链表的头节点。最后返回 $\textit{smallHead}$ 的 $\textit{next}$ 指针即为我们要求的答案。
class Solution {
public:
ListNode* partition(ListNode* head, int x) {
ListNode* small = new ListNode(0);
ListNode* smallHead = small;
ListNode* large = new ListNode(0);
ListNode* largeHead = large;
while (head != nullptr) {
if (head->val < x) {
small->next = head;
small = small->next;
} else {
large->next = head;
large = large->next;
}
head = head->next;
}
large->next = nullptr;
small->next = largeHead->next;
return smallHead->next;
}
};
class Solution {
public ListNode partition(ListNode head, int x) {
ListNode small = new ListNode(0);
ListNode smallHead = small;
ListNode large = new ListNode(0);
ListNode largeHead = large;
while (head != null) {
if (head.val < x) {
small.next = head;
small = small.next;
} else {
large.next = head;
large = large.next;
}
head = head.next;
}
large.next = null;
small.next = largeHead.next;
return smallHead.next;
}
}
var partition = function(head, x) {
let small = new ListNode(0);
const smallHead = small;
let large = new ListNode(0);
const largeHead = large;
while (head !== null) {
if (head.val < x) {
small.next = head;
small = small.next;
} else {
large.next = head;
large = large.next;
}
head = head.next;
}
large.next = null;
small.next = largeHead.next;
return smallHead.next;
};
func partition(head *ListNode, x int) *ListNode {
small := &ListNode{}
smallHead := small
large := &ListNode{}
largeHead := large
for head != nil {
if head.Val < x {
small.Next = head
small = small.Next
} else {
large.Next = head
large = large.Next
}
head = head.Next
}
large.Next = nil
small.Next = largeHead.Next
return smallHead.Next
}
struct ListNode* partition(struct ListNode* head, int x) {
struct ListNode* small = malloc(sizeof(struct ListNode));
struct ListNode* smallHead = small;
struct ListNode* large = malloc(sizeof(struct ListNode));
struct ListNode* largeHead = large;
while (head != NULL) {
if (head->val < x) {
small->next = head;
small = small->next;
} else {
large->next = head;
large = large->next;
}
head = head->next;
}
large->next = NULL;
small->next = largeHead->next;
return smallHead->next;
}
复杂度分析
时间复杂度: $O(n)$,其中 $n$ 是原链表的长度。我们对该链表进行了一次遍历。
空间复杂度: $O(1)$。
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
127053 | 200850 | 63.3% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|