英文原文
You are given two integer arrays persons
and times
. In an election, the ith
vote was cast for persons[i]
at time times[i]
.
For each query at a time t
, find the person that was leading the election at time t
. Votes cast at time t
will count towards our query. In the case of a tie, the most recent vote (among tied candidates) wins.
Implement the TopVotedCandidate
class:
TopVotedCandidate(int[] persons, int[] times)
Initializes the object with thepersons
andtimes
arrays.int q(int t)
Returns the number of the person that was leading the election at timet
according to the mentioned rules.
Example 1:
Input ["TopVotedCandidate", "q", "q", "q", "q", "q", "q"] [[[0, 1, 1, 0, 0, 1, 0], [0, 5, 10, 15, 20, 25, 30]], [3], [12], [25], [15], [24], [8]] Output [null, 0, 1, 1, 0, 0, 1] Explanation TopVotedCandidate topVotedCandidate = new TopVotedCandidate([0, 1, 1, 0, 0, 1, 0], [0, 5, 10, 15, 20, 25, 30]); topVotedCandidate.q(3); // return 0, At time 3, the votes are [0], and 0 is leading. topVotedCandidate.q(12); // return 1, At time 12, the votes are [0,1,1], and 1 is leading. topVotedCandidate.q(25); // return 1, At time 25, the votes are [0,1,1,0,0,1], and 1 is leading (as ties go to the most recent vote.) topVotedCandidate.q(15); // return 0 topVotedCandidate.q(24); // return 0 topVotedCandidate.q(8); // return 1
Constraints:
1 <= persons.length <= 5000
times.length == persons.length
0 <= persons[i] < persons.length
0 <= times[i] <= 109
times
is sorted in a strictly increasing order.times[0] <= t <= 109
- At most
104
calls will be made toq
.
中文题目
在选举中,第 i
张票是在时间为 times[i]
时投给 persons[i]
的。
现在,我们想要实现下面的查询函数: TopVotedCandidate.q(int t)
将返回在 t
时刻主导选举的候选人的编号。
在 t
时刻投出的选票也将被计入我们的查询之中。在平局的情况下,最近获得投票的候选人将会获胜。
示例:
输入:["TopVotedCandidate","q","q","q","q","q","q"], [[[0,1,1,0,0,1,0],[0,5,10,15,20,25,30]],[3],[12],[25],[15],[24],[8]] 输出:[null,0,1,1,0,0,1] 解释: 时间为 3,票数分布情况是 [0],编号为 0 的候选人领先。 时间为 12,票数分布情况是 [0,1,1],编号为 1 的候选人领先。 时间为 25,票数分布情况是 [0,1,1,0,0,1],编号为 1 的候选人领先(因为最近的投票结果是平局)。 在时间 15、24 和 8 处继续执行 3 个查询。
提示:
1 <= persons.length = times.length <= 5000
0 <= persons[i] <= persons.length
times
是严格递增的数组,所有元素都在[0, 10^9]
范围中。- 每个测试用例最多调用
10000
次TopVotedCandidate.q
。 TopVotedCandidate.q(int t)
被调用时总是满足t >= times[0]
。
通过代码
官方题解
方法 1:列表 + 二分搜索
想法和算法
我么可以把选票存储在选票列表的列表 A
中。每个投票都有一个人和一个时间戳,A[count]
是一个列表,记录当前人获得的第 count
张选票。
然后,A[i][0]
和 A[i]
单调增加,所以我们可以利用二分搜索根据时间找到最近的选票。
class TopVotedCandidate {
List<List<Vote>> A;
public TopVotedCandidate(int[] persons, int[] times) {
A = new ArrayList();
Map<Integer, Integer> count = new HashMap();
for (int i = 0; i < persons.length; ++i) {
int p = persons[i], t = times[i];
int c = count.getOrDefault(p, 0) + 1;
count.put(p, c);
while (A.size() <= c)
A.add(new ArrayList<Vote>());
A.get(c).add(new Vote(p, t));
}
}
public int q(int t) {
// Binary search on A[i][0].time for smallest i
// such that A[i][0].time > t
int lo = 1, hi = A.size();
while (lo < hi) {
int mi = lo + (hi - lo) / 2;
if (A.get(mi).get(0).time <= t)
lo = mi + 1;
else
hi = mi;
}
int i = lo - 1;
// Binary search on A[i][j].time for smallest j
// such that A[i][j].time > t
lo = 0; hi = A.get(i).size();
while (lo < hi) {
int mi = lo + (hi - lo) / 2;
if (A.get(i).get(mi).time <= t)
lo = mi + 1;
else
hi = mi;
}
int j = Math.max(lo-1, 0);
return A.get(i).get(j).person;
}
}
class Vote {
int person, time;
Vote(int p, int t) {
person = p;
time = t;
}
}
class TopVotedCandidate(object):
def __init__(self, persons, times):
self.A = []
self.count = collections.Counter()
for p, t in zip(persons, times):
self.count[p] = c = self.count[p] + 1
while len(self.A) <= c: self.A.append([])
self.A[c].append((t, p))
def q(self, t):
lo, hi = 1, len(self.A)
while lo < hi:
mi = (lo + hi) / 2
if self.A[mi][0][0] <= t:
lo = mi + 1
else:
hi = mi
i = lo - 1
j = bisect.bisect(self.A[i], (t, float('inf')))
return self.A[i][j-1][1]
复杂度分析
- 时间复杂度:$O(N + Q \log^2 N)$,其中 $N$ 是选票的个数,$Q$ 是询问的个数。
- 空间复杂度:$O(N)$。
方法 2:预计算结果 + 二分搜索
想法和算法
每当选票记录,我们可以记录每个胜者改变的 (winner, time)
时刻信息。之后,我们拥有一个有序的时刻信息,并用二分搜索找到答案。
class TopVotedCandidate {
List<Vote> A;
public TopVotedCandidate(int[] persons, int[] times) {
A = new ArrayList();
Map<Integer, Integer> count = new HashMap();
int leader = -1; // current leader
int m = 0; // current number of votes for leader
for (int i = 0; i < persons.length; ++i) {
int p = persons[i], t = times[i];
int c = count.getOrDefault(p, 0) + 1;
count.put(p, c);
if (c >= m) {
if (p != leader) { // lead change
leader = p;
A.add(new Vote(leader, t));
}
if (c > m) m = c;
}
}
}
public int q(int t) {
int lo = 1, hi = A.size();
while (lo < hi) {
int mi = lo + (hi - lo) / 2;
if (A.get(mi).time <= t)
lo = mi + 1;
else
hi = mi;
}
return A.get(lo - 1).person;
}
}
class Vote {
int person, time;
Vote(int p, int t) {
person = p;
time = t;
}
}
class TopVotedCandidate(object):
def __init__(self, persons, times):
self.A = []
count = collections.Counter()
leader, m = None, 0 # leader, num votes for leader
for p, t in itertools.izip(persons, times):
count[p] += 1
c = count[p]
if c >= m:
if p != leader: # lead change
leader = p
self.A.append((t, leader))
if c > m:
m = c
def q(self, t):
i = bisect.bisect(self.A, (t, float('inf')), 1)
return self.A[i-1][1]
复杂度分析
- 时间复杂度:$O(N + Q\log{N})$,其中 $N$ 是选票个数,$Q$ 是询问个数。
- 空间复杂度:$O(N)$。
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
4918 | 11465 | 42.9% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|