英文原文
Oh, no! You have accidentally removed all spaces, punctuation, and capitalization in a lengthy document. A sentence like "I reset the computer. It still didn't boot!" became "iresetthecomputeritstilldidntboot''. You'll deal with the punctuation and capitalization later; right now you need to re-insert the spaces. Most of the words are in a dictionary but a few are not. Given a dictionary (a list of strings) and the document (a string), design an algorithm to unconcatenate the document in a way that minimizes the number of unrecognized characters. Return the number of unrecognized characters.
Note: This problem is slightly different from the original one in the book.
Example:
Input: dictionary = ["looked","just","like","her","brother"] sentence = "jesslookedjustliketimherbrother" Output: 7 Explanation: After unconcatenating, we got "jess looked just like tim her brother", which containing 7 unrecognized characters.
Note:
0 <= len(sentence) <= 1000
The total number of characters in dictionary
is less than or equal to 150000.- There are only lowercase letters in
dictionary
andsentence
.
中文题目
哦,不!你不小心把一个长篇文章中的空格、标点都删掉了,并且大写也弄成了小写。像句子"I reset the computer. It still didn’t boot!"
已经变成了"iresetthecomputeritstilldidntboot"
。在处理标点符号和大小写之前,你得先把它断成词语。当然了,你有一本厚厚的词典dictionary
,不过,有些词没在词典里。假设文章用sentence
表示,设计一个算法,把文章断开,要求未识别的字符最少,返回未识别的字符数。
注意:本题相对原题稍作改动,只需返回未识别的字符数
示例:
输入: dictionary = ["looked","just","like","her","brother"] sentence = "jesslookedjustliketimherbrother" 输出: 7 解释: 断句后为"jess looked just like tim her brother",共7个未识别字符。
提示:
0 <= len(sentence) <= 1000
dictionary
中总字符数不超过 150000。- 你可以认为
dictionary
和sentence
中只包含小写字母。
通过代码
高赞题解
🙋 今日打卡~
哦,不!工作日打卡题不全都是 EASY 嘛?!🤷♀️
题目分析
题意:给定字符串,尽可能多地匹配字典内的单词,即最少未匹配数。
分:拿到题目,先想贪心能不能做,显然不行。比如给定字符串:abcdef
,字典:["abcd", "ab", "def"]
,贪心匹配是 abcd ef,有2个字符未匹配。显然有更优匹配策略: ab c def ,只有 1 个字符未匹配。所以这题需要用动态规划来解决(怎么思考一个题目可不可以用 dp 来解决,先假设 dp 表达含义,再想转移方程,很多时候自然而然就出来了)。
1、状态定义:
dp[i]
表示字符串的前 i
个字符的最少未匹配数。
2、状态转移:
假设当前我们已经考虑完了前 i
个字符了,对于前 i + 1
个字符对应的最少未匹配数:
- 第
i + 1
个字符未匹配,则dp[i + 1] = dp[i] + 1
,即不匹配数加 1; - 遍历前
i
个字符,若以其中某一个下标idx
为开头、以第i + 1
个字符为结尾的字符串正好在词典里,则dp[i] = min(dp[i], dp[idx])
更新dp[i]
。
于是,有了解法一。
3、解法一代码:
时间复杂度是 $O(n^2)$,$n$ 为待匹配字符串的长度。
class Solution {
public int respace(String[] dictionary, String sentence) {
Set<String> dict = new HashSet<>(Arrays.asList(dictionary));
int n = sentence.length();
int[] dp = new int[n + 1];
for (int i = 1; i <= n; i++) {
dp[i] = dp[i - 1] + 1;
for (int idx = 0; idx < i; idx++) {
if (dict.contains(sentence.substring(idx, i))) {
dp[i] = Math.min(dp[i], dp[idx]);
}
}
}
return dp[n];
}
}
4、使用 Trie 进行优化:
对于上述解法,计算 dp[i + 1]
时,我们需要用 idx
来遍历前 i
个字符,逐个判断以 idx
为开头,以第 i + 1
个字符为结尾的字符串是否在字典里。
这一步可以利用字典树来加速,通过字典树我们可以查询以第 i + 1
个字符为结尾的单词有哪些(构建字典树时将单词逆序插入即可)。
关于字典树的学习,可以看下 这篇题解,这就是解法二。
时间复杂度是 $O(m + n^2)$,$m$ 是字典长度,$n$ 为待匹配字符串的长度。为什么还是 $n^2$ 呢?因为有可能状态转移的时候,每个位置都需要转移,这是最坏情况,绝大多数情况下远小于 $n$,所以解法二最终耗时会远小于解法一。
5、解法二代码:
class Solution {
public int respace(String[] dictionary, String sentence) {
// 构建字典树
Trie trie = new Trie();
for (String word: dictionary) {
trie.insert(word);
}
// 状态转移,dp[i] 表示字符串的前 i 个字符的最少未匹配数
int n = sentence.length();
int[] dp = new int[n + 1];
for (int i = 1; i <= n; i++) {
dp[i] = dp[i - 1] + 1;
for (int idx: trie.search(sentence, i - 1)) {
dp[i] = Math.min(dp[i], dp[idx]);
}
}
return dp[n];
}
}
class Trie {
TrieNode root;
public Trie() {
root = new TrieNode();
}
// 将单词倒序插入字典树
public void insert(String word) {
TrieNode cur = root;
for (int i = word.length() - 1; i >= 0; i--) {
int c = word.charAt(i) - 'a';
if (cur.children[c] == null) {
cur.children[c] = new TrieNode();
}
cur = cur.children[c];
}
cur.isWord = true;
}
// 找到 sentence 中以 endPos 为结尾的单词,返回这些单词的开头下标。
public List<Integer> search(String sentence, int endPos) {
List<Integer> indices = new ArrayList<>();
TrieNode cur = root;
for (int i = endPos; i >= 0; i--) {
int c = sentence.charAt(i) - 'a';
if (cur.children[c] == null) {
break;
}
cur = cur.children[c];
if (cur.isWord) {
indices.add(i);
}
}
return indices;
}
}
class TrieNode {
boolean isWord;
TrieNode[] children = new TrieNode[26];
public TrieNode() {}
}
统计信息
通过次数 | 提交次数 | AC比率 |
---|---|---|
25006 | 45285 | 55.2% |
提交历史
提交时间 | 提交结果 | 执行时间 | 内存消耗 | 语言 |
---|